Normalized defining polynomial
\( x^{18} - 2 x^{17} + 37 x^{16} - 56 x^{15} + 942 x^{14} - 1299 x^{13} + 10614 x^{12} - 5628 x^{11} + 70988 x^{10} - 40497 x^{9} + 245183 x^{8} - 70936 x^{7} + 521839 x^{6} - 198907 x^{5} + 492669 x^{4} + 27195 x^{3} + 148460 x^{2} - 32205 x + 12769 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8910428186811131012489454563328=-\,2^{12}\cdot 3^{9}\cdot 7^{12}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{883601634} a^{16} + \frac{15082742}{441800817} a^{15} - \frac{60330935}{883601634} a^{14} + \frac{17453369}{883601634} a^{13} + \frac{6972088}{441800817} a^{12} + \frac{120095737}{441800817} a^{11} - \frac{215612167}{883601634} a^{10} - \frac{269998363}{883601634} a^{9} + \frac{6231117}{147266939} a^{8} - \frac{21227574}{147266939} a^{7} + \frac{42981802}{147266939} a^{6} - \frac{440663057}{883601634} a^{5} + \frac{307161739}{883601634} a^{4} + \frac{126974771}{883601634} a^{3} + \frac{45747842}{441800817} a^{2} + \frac{21377815}{883601634} a + \frac{171665627}{883601634}$, $\frac{1}{236124131409619738039416712579419178956938586} a^{17} - \frac{82343944454976512148715853495593421}{236124131409619738039416712579419178956938586} a^{16} - \frac{7506729341842465238840421236078572759744165}{236124131409619738039416712579419178956938586} a^{15} - \frac{1952282660106730482202705623254644738039519}{39354021901603289673236118763236529826156431} a^{14} - \frac{13769016940685593930299952502054124984556277}{236124131409619738039416712579419178956938586} a^{13} + \frac{11940559591942827508281993422125063197101969}{236124131409619738039416712579419178956938586} a^{12} - \frac{47772781264648186221896942984313536227502935}{236124131409619738039416712579419178956938586} a^{11} - \frac{55511849040044334719936720851119977160539776}{118062065704809869019708356289709589478469293} a^{10} + \frac{34696663852704162983111845523885393657884011}{78708043803206579346472237526473059652312862} a^{9} + \frac{30002647543635042131187734891269766792832131}{236124131409619738039416712579419178956938586} a^{8} - \frac{15589599562475742962233429343979168566138242}{118062065704809869019708356289709589478469293} a^{7} + \frac{1809889165667275160613136750271534555929287}{78708043803206579346472237526473059652312862} a^{6} + \frac{6234728816636287315743430382505660252387711}{39354021901603289673236118763236529826156431} a^{5} + \frac{53676423395754311943913306419103529597118685}{236124131409619738039416712579419178956938586} a^{4} + \frac{8071174169540290569763630510856311975840473}{78708043803206579346472237526473059652312862} a^{3} - \frac{29963305468902586534659458093453098763629168}{118062065704809869019708356289709589478469293} a^{2} + \frac{18448001370859757296024491696320512544100275}{39354021901603289673236118763236529826156431} a - \frac{357767244983415357451692321791999930286319}{1044797041635485566546091648581500791844861}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5980176101770349354851223765022}{267229170164277602546190756115576829} a^{17} + \frac{31935775754609316363216140276129}{801687510492832807638572268346730487} a^{16} - \frac{652693870568586726811064117179825}{801687510492832807638572268346730487} a^{15} + \frac{851777001379400401315558600617466}{801687510492832807638572268346730487} a^{14} - \frac{5520517826220042400944470052309615}{267229170164277602546190756115576829} a^{13} + \frac{6465038793562295456212576306152135}{267229170164277602546190756115576829} a^{12} - \frac{182326758504202744431109235484100355}{801687510492832807638572268346730487} a^{11} + \frac{18195431285457097759861191873223499}{267229170164277602546190756115576829} a^{10} - \frac{1218775383587301379831784961592208933}{801687510492832807638572268346730487} a^{9} + \frac{426124113219327832773110545725212735}{801687510492832807638572268346730487} a^{8} - \frac{4030736783378976332083334205330599213}{801687510492832807638572268346730487} a^{7} + \frac{148143849723047111179251685049969326}{801687510492832807638572268346730487} a^{6} - \frac{8415420212681381539029774553426728350}{801687510492832807638572268346730487} a^{5} + \frac{1233269138087728656719089024556322184}{801687510492832807638572268346730487} a^{4} - \frac{2252313089244893042095879952018829552}{267229170164277602546190756115576829} a^{3} - \frac{3456577715917098931944177173038665355}{801687510492832807638572268346730487} a^{2} - \frac{1856013106355198027207701370710997747}{801687510492832807638572268346730487} a + \frac{1124239640883438813457284887808858}{2364859912958208872090183682438733} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8375514.85964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T42):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{7})^+\), 6.0.64827.1, 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |