Normalized defining polynomial
\( x^{18} - 6 x^{17} + 15 x^{16} - 26 x^{15} + 30 x^{14} + 72 x^{13} - 275 x^{12} + 114 x^{11} + 462 x^{10} - 328 x^{9} - 243 x^{8} + 150 x^{7} - 107 x^{6} + 114 x^{5} + 366 x^{4} + 228 x^{3} + 156 x^{2} + 108 x + 28 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8894496906488836800000000=-\,2^{12}\cdot 3^{33}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{21892} a^{16} + \frac{73}{21892} a^{15} - \frac{81}{1684} a^{14} - \frac{1015}{10946} a^{13} - \frac{1363}{21892} a^{12} - \frac{2623}{21892} a^{11} + \frac{1541}{21892} a^{10} + \frac{2}{421} a^{9} - \frac{4951}{21892} a^{8} + \frac{3249}{21892} a^{7} - \frac{277}{21892} a^{6} + \frac{103}{842} a^{5} + \frac{1559}{10946} a^{4} + \frac{1603}{10946} a^{3} - \frac{2183}{5473} a^{2} + \frac{220}{5473} a + \frac{2407}{5473}$, $\frac{1}{21783243368068} a^{17} + \frac{70756011}{21783243368068} a^{16} + \frac{366895104679}{5445810842017} a^{15} + \frac{5017724562017}{21783243368068} a^{14} - \frac{278676132198}{5445810842017} a^{13} - \frac{498841094893}{21783243368068} a^{12} + \frac{1927609533557}{10891621684034} a^{11} + \frac{1678573351939}{21783243368068} a^{10} - \frac{704472534473}{5445810842017} a^{9} + \frac{10104699313915}{21783243368068} a^{8} + \frac{1170996251104}{5445810842017} a^{7} - \frac{2347092715953}{21783243368068} a^{6} - \frac{1966021951571}{21783243368068} a^{5} + \frac{2077134048664}{5445810842017} a^{4} + \frac{117890797879}{418908526309} a^{3} - \frac{3341848946881}{10891621684034} a^{2} - \frac{551713726048}{5445810842017} a - \frac{160510647403}{777972977431}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{679228677}{9206780798} a^{17} - \frac{4871431341}{9206780798} a^{16} + \frac{31586491031}{18413561596} a^{15} - \frac{70673298813}{18413561596} a^{14} + \frac{117245319255}{18413561596} a^{13} - \frac{11509977063}{9206780798} a^{12} - \frac{378459892833}{18413561596} a^{11} + \frac{626289219891}{18413561596} a^{10} - \frac{64800736109}{18413561596} a^{9} - \frac{262111115385}{9206780798} a^{8} + \frac{451095265419}{18413561596} a^{7} - \frac{318508527811}{18413561596} a^{6} - \frac{8084700495}{18413561596} a^{5} + \frac{197806258401}{9206780798} a^{4} + \frac{10672559588}{4603390399} a^{3} + \frac{65580192081}{9206780798} a^{2} + \frac{23651545230}{4603390399} a + \frac{653365325}{4603390399} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 960741.0373621208 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 6.0.2834352.2, 9.3.573956280000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |