Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 3 x^{15} - 8 x^{14} + 24 x^{13} - 26 x^{12} + 7 x^{11} + 20 x^{10} - 40 x^{9} + 56 x^{8} - 100 x^{7} + 171 x^{6} - 216 x^{5} + 207 x^{4} - 138 x^{3} + 56 x^{2} - 20 x + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8885836148113812196323=-\,3^{9}\cdot 7^{8}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1405} a^{16} + \frac{118}{281} a^{15} - \frac{649}{1405} a^{14} - \frac{133}{281} a^{13} + \frac{602}{1405} a^{12} - \frac{14}{281} a^{11} + \frac{109}{1405} a^{10} - \frac{156}{1405} a^{9} + \frac{587}{1405} a^{8} + \frac{316}{1405} a^{7} + \frac{439}{1405} a^{6} + \frac{387}{1405} a^{5} - \frac{13}{1405} a^{4} + \frac{16}{281} a^{3} + \frac{287}{1405} a^{2} + \frac{443}{1405} a + \frac{31}{281}$, $\frac{1}{1296084581245} a^{17} - \frac{330196483}{1296084581245} a^{16} - \frac{234895413309}{1296084581245} a^{15} + \frac{257358394507}{1296084581245} a^{14} + \frac{221897008377}{1296084581245} a^{13} + \frac{310683828874}{1296084581245} a^{12} - \frac{727301096}{4612400645} a^{11} - \frac{441734178503}{1296084581245} a^{10} - \frac{43499383011}{259216916249} a^{9} + \frac{108629732593}{259216916249} a^{8} - \frac{4454372507}{76240269485} a^{7} + \frac{89292854209}{259216916249} a^{6} - \frac{235090669464}{1296084581245} a^{5} - \frac{30793027721}{1296084581245} a^{4} - \frac{138333642613}{1296084581245} a^{3} - \frac{639520136738}{1296084581245} a^{2} + \frac{590754703921}{1296084581245} a + \frac{11569082163}{259216916249}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{86523088}{4612400645} a^{17} - \frac{179592228}{4612400645} a^{16} + \frac{202658678}{4612400645} a^{15} + \frac{335823602}{4612400645} a^{14} - \frac{1052114249}{4612400645} a^{13} + \frac{1118460544}{4612400645} a^{12} + \frac{191419542}{4612400645} a^{11} - \frac{428541938}{922480129} a^{10} + \frac{1964417304}{4612400645} a^{9} - \frac{1244774728}{4612400645} a^{8} + \frac{26407737}{271317685} a^{7} - \frac{3299317316}{4612400645} a^{6} + \frac{962275944}{922480129} a^{5} - \frac{2573579506}{4612400645} a^{4} - \frac{2656532934}{4612400645} a^{3} + \frac{6750421748}{4612400645} a^{2} - \frac{3811344654}{4612400645} a + \frac{560767290}{922480129} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9914.42923149 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.23.1, 6.0.14283.1, 9.1.671898241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |