Normalized defining polynomial
\( x^{18} + 118863 x^{12} + 418673070 x^{6} + 373714754427 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8880520706942285236653498213029984177183105373284187=-\,3^{27}\cdot 1801^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $769.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1801$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{441} a^{7} - \frac{1}{3} a^{5} - \frac{59}{147} a$, $\frac{1}{441} a^{8} - \frac{59}{147} a^{2}$, $\frac{1}{882} a^{9} - \frac{1}{18} a^{6} - \frac{1}{3} a^{4} + \frac{44}{147} a^{3} - \frac{1}{6}$, $\frac{1}{882} a^{10} - \frac{1}{882} a^{7} - \frac{1}{3} a^{5} + \frac{44}{147} a^{4} + \frac{59}{294} a$, $\frac{1}{2646} a^{11} - \frac{1}{882} a^{8} + \frac{44}{441} a^{5} - \frac{1}{3} a^{3} + \frac{59}{294} a^{2}$, $\frac{1}{233528022} a^{12} + \frac{1}{2646} a^{10} - \frac{1}{882} a^{7} + \frac{224129}{5987898} a^{6} - \frac{1}{3} a^{5} + \frac{191}{441} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{59}{294} a - \frac{58757}{529542}$, $\frac{1}{233528022} a^{13} - \frac{6697}{5987898} a^{7} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{7468457}{25947558} a$, $\frac{1}{11442873078} a^{14} - \frac{33853}{293407002} a^{8} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{583433639}{1271430342} a^{2}$, $\frac{1}{560700780822} a^{15} + \frac{1812709}{7188471549} a^{9} - \frac{1}{3} a^{5} + \frac{22674227515}{62300086758} a^{3} - \frac{1}{2}$, $\frac{1}{82423014780834} a^{16} + \frac{476336699}{2113410635406} a^{10} + \frac{1}{1323} a^{8} - \frac{1}{882} a^{7} - \frac{1}{3} a^{5} - \frac{1554747016793}{9158112753426} a^{4} + \frac{88}{441} a^{2} - \frac{44}{147} a - \frac{1}{3}$, $\frac{1}{4038727724260866} a^{17} - \frac{161191181}{51778560567447} a^{11} - \frac{1}{2646} a^{9} - \frac{1}{18} a^{6} - \frac{194788849444523}{448747524917874} a^{5} - \frac{1}{3} a^{4} + \frac{103}{441} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{6}$
Class group and class number
$C_{26}\times C_{26}\times C_{312}\times C_{67704}$, which has order $14279586048$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{20766695586} a^{15} + \frac{4664}{798719061} a^{9} + \frac{213064305}{6922231862} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1321946620.3369434 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.9730803.1 x3, 3.3.262731681.1, 6.0.284065581074427.2, 6.0.207083808603257283.2, 6.0.63843798483.2 x2, 9.3.54407477142216048038082723.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 1801 | Data not computed | ||||||