Normalized defining polynomial
\( x^{18} - 201 x^{16} - 324 x^{15} + 17658 x^{14} + 54144 x^{13} - 814130 x^{12} - 3918456 x^{11} + 18110517 x^{10} + 145388304 x^{9} - 29319813 x^{8} - 2622648420 x^{7} - 6893038592 x^{6} + 11462360976 x^{5} + 109788683088 x^{4} + 298107348480 x^{3} + 389859017472 x^{2} + 168742637568 x + 25516048384 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8826761707820991064360908575466167817698823=-\,3^{24}\cdot 7^{15}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $243.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2331=3^{2}\cdot 7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2331}(1,·)$, $\chi_{2331}(898,·)$, $\chi_{2331}(1987,·)$, $\chi_{2331}(454,·)$, $\chi_{2331}(1543,·)$, $\chi_{2331}(10,·)$, $\chi_{2331}(1111,·)$, $\chi_{2331}(1444,·)$, $\chi_{2331}(988,·)$, $\chi_{2331}(100,·)$, $\chi_{2331}(2209,·)$, $\chi_{2331}(676,·)$, $\chi_{2331}(1222,·)$, $\chi_{2331}(1000,·)$, $\chi_{2331}(556,·)$, $\chi_{2331}(2098,·)$, $\chi_{2331}(565,·)$, $\chi_{2331}(1786,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} + \frac{1}{64} a^{6} + \frac{3}{64} a^{5} + \frac{3}{64} a^{4} - \frac{3}{16} a^{3} - \frac{3}{16} a^{2}$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} + \frac{5}{128} a^{4} + \frac{5}{32} a^{3} + \frac{7}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{6} - \frac{5}{128} a^{5} - \frac{3}{64} a^{4} + \frac{5}{32} a^{3} + \frac{3}{16} a^{2}$, $\frac{1}{512} a^{10} + \frac{1}{512} a^{9} - \frac{1}{256} a^{8} + \frac{1}{256} a^{7} - \frac{7}{512} a^{6} + \frac{1}{512} a^{5} - \frac{1}{64} a^{4} + \frac{31}{128} a^{3} - \frac{7}{32} a^{2} - \frac{1}{2} a$, $\frac{1}{2048} a^{11} - \frac{1}{2048} a^{10} + \frac{1}{512} a^{9} + \frac{3}{1024} a^{8} + \frac{13}{2048} a^{7} + \frac{55}{2048} a^{6} + \frac{59}{1024} a^{5} - \frac{31}{512} a^{4} + \frac{39}{256} a^{3} + \frac{3}{16} a^{2} - \frac{1}{16} a$, $\frac{1}{10240} a^{12} - \frac{1}{5120} a^{11} + \frac{1}{10240} a^{10} - \frac{1}{5120} a^{9} + \frac{3}{2048} a^{8} - \frac{3}{1024} a^{7} + \frac{31}{2048} a^{6} + \frac{229}{5120} a^{5} - \frac{91}{2560} a^{4} + \frac{251}{1280} a^{3} - \frac{29}{160} a^{2} - \frac{3}{80} a - \frac{2}{5}$, $\frac{1}{40960} a^{13} + \frac{7}{40960} a^{11} - \frac{1}{4096} a^{10} + \frac{51}{40960} a^{9} + \frac{3}{2048} a^{8} + \frac{13}{8192} a^{7} + \frac{259}{20480} a^{6} - \frac{487}{10240} a^{5} + \frac{5}{1024} a^{4} + \frac{49}{256} a^{3} + \frac{53}{320} a^{2} + \frac{3}{80} a - \frac{1}{5}$, $\frac{1}{81920} a^{14} - \frac{1}{81920} a^{13} + \frac{3}{81920} a^{12} - \frac{9}{81920} a^{11} + \frac{57}{81920} a^{10} - \frac{303}{81920} a^{9} + \frac{53}{16384} a^{8} + \frac{573}{81920} a^{7} - \frac{263}{40960} a^{6} - \frac{481}{20480} a^{5} - \frac{23}{10240} a^{4} - \frac{131}{640} a^{3} - \frac{53}{640} a^{2} + \frac{27}{80} a - \frac{1}{5}$, $\frac{1}{120750080} a^{15} - \frac{1}{1097728} a^{14} - \frac{73}{15093760} a^{13} + \frac{153}{15093760} a^{12} + \frac{963}{60375040} a^{11} - \frac{2109}{2744320} a^{10} + \frac{107829}{30187520} a^{9} - \frac{23847}{7546880} a^{8} + \frac{168737}{120750080} a^{7} - \frac{1092499}{60375040} a^{6} - \frac{40505}{6037504} a^{5} + \frac{309031}{15093760} a^{4} - \frac{155043}{1886720} a^{3} - \frac{2549}{17152} a^{2} + \frac{1863}{29480} a + \frac{861}{3685}$, $\frac{1}{88872058880} a^{16} - \frac{1}{386400256} a^{15} - \frac{131511}{44436029440} a^{14} - \frac{271677}{44436029440} a^{13} - \frac{86723}{22218014720} a^{12} - \frac{4608279}{44436029440} a^{11} - \frac{3970777}{44436029440} a^{10} - \frac{10460293}{4039639040} a^{9} - \frac{306264693}{88872058880} a^{8} + \frac{121564307}{22218014720} a^{7} + \frac{6833161}{1110900736} a^{6} + \frac{346430571}{5554503680} a^{5} - \frac{307808819}{5554503680} a^{4} + \frac{20720663}{86789120} a^{3} + \frac{10955487}{69431296} a^{2} + \frac{6219549}{21697280} a - \frac{1334}{3685}$, $\frac{1}{476599205105637369336260004228451315283394560} a^{17} + \frac{62494544107054201266409022209}{1883791324528210945993122546357515080171520} a^{16} - \frac{1352972358744728221742855520041923}{7446862579775583895879062566069551801303040} a^{15} - \frac{221273525810061754682193848666192282561}{119149801276409342334065001057112828820848640} a^{14} - \frac{1869149272631907531459685910531413849853}{238299602552818684668130002114225657641697280} a^{13} - \frac{4840832350841248818758212319978359982409}{238299602552818684668130002114225657641697280} a^{12} - \frac{18671316168779122734662559767706072971551}{119149801276409342334065001057112828820848640} a^{11} - \frac{29197843951586925258780678756860071309121}{119149801276409342334065001057112828820848640} a^{10} - \frac{10923311441703850742241569586768723467933}{43327200464148851757841818566222846843944960} a^{9} + \frac{1393239754304953210836811297667112040398157}{476599205105637369336260004228451315283394560} a^{8} + \frac{477116764693110656385218087535905521733477}{119149801276409342334065001057112828820848640} a^{7} - \frac{437818353103583082689313479101050915640137}{14893725159551167791758125132139103602606080} a^{6} + \frac{505451318577720135428109115528538808505467}{14893725159551167791758125132139103602606080} a^{5} - \frac{329864286492716020565500083662417980445845}{5957490063820467116703250052855641441042432} a^{4} + \frac{109707076668891346900044088868270713615143}{1861715644943895973969765641517387950325760} a^{3} + \frac{423479243256908691162366053794180816673713}{1861715644943895973969765641517387950325760} a^{2} + \frac{945886370965091701185661958329076015681}{5059009904738847755352624025862467256320} a - \frac{175622023634523064443951472631142051}{429603422617089653137960600022288320}$
Class group and class number
$C_{3}\times C_{693}\times C_{9009}$, which has order $18729711$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958454033532.8324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.110889.2, 3.3.67081.1, 3.3.3969.1, 3.3.5433561.1, 6.0.4217655020103.6, 6.0.31499023927.2, 6.0.110270727.2, 6.0.206665095985047.2, 9.9.160418200800801137481.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 7 | Data not computed | ||||||
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |