Normalized defining polynomial
\( x^{18} + 74 x^{16} + 2199 x^{14} + 34302 x^{12} + 306303 x^{10} + 1594765 x^{8} + 4702285 x^{6} + 7249309 x^{4} + 5098564 x^{2} + 1274641 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-882021844557535515255288446111186944=-\,2^{18}\cdot 1129^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3387} a^{14} + \frac{74}{3387} a^{12} + \frac{1070}{3387} a^{10} - \frac{697}{3387} a^{8} - \frac{785}{3387} a^{6} - \frac{512}{3387} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3387} a^{15} + \frac{74}{3387} a^{13} + \frac{1070}{3387} a^{11} - \frac{697}{3387} a^{9} - \frac{785}{3387} a^{7} - \frac{512}{3387} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{995557503314837067} a^{16} - \frac{46098685658871}{331852501104945689} a^{14} + \frac{101918642504408494}{995557503314837067} a^{12} + \frac{123941481547185595}{995557503314837067} a^{10} - \frac{54605682824012725}{331852501104945689} a^{8} - \frac{69127878713152480}{995557503314837067} a^{6} + \frac{10905433539095750}{32114758171446357} a^{4} - \frac{62389019699276}{293934899118641} a^{2} - \frac{287901855948259}{881804697355923}$, $\frac{1}{995557503314837067} a^{17} - \frac{46098685658871}{331852501104945689} a^{15} + \frac{101918642504408494}{995557503314837067} a^{13} + \frac{123941481547185595}{995557503314837067} a^{11} - \frac{54605682824012725}{331852501104945689} a^{9} - \frac{69127878713152480}{995557503314837067} a^{7} + \frac{10905433539095750}{32114758171446357} a^{5} - \frac{62389019699276}{293934899118641} a^{3} - \frac{287901855948259}{881804697355923} a$
Class group and class number
$C_{2}\times C_{42720}$, which has order $85440$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 290542.983381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t18n375 |
| Character table for t18n375 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1129 | Data not computed | ||||||