Normalized defining polynomial
\( x^{18} - 9 x^{16} - 3 x^{15} + 27 x^{14} - 9 x^{13} - 6 x^{12} + 81 x^{11} + 243 x^{10} - 602 x^{9} - 486 x^{8} + 792 x^{7} + 399 x^{6} - 594 x^{5} + 576 x^{4} - 210 x^{3} + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-879460753693354224609375=-\,3^{37}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{15} a^{10} + \frac{1}{5} a^{6} + \frac{2}{5} a^{2} + \frac{1}{3} a$, $\frac{1}{45} a^{11} + \frac{1}{45} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{2}{15} a^{3} - \frac{4}{45} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{45} a^{12} + \frac{1}{9} a^{9} + \frac{2}{5} a^{8} - \frac{1}{3} a^{6} - \frac{1}{5} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9}$, $\frac{1}{315} a^{13} - \frac{2}{315} a^{12} - \frac{2}{315} a^{11} - \frac{2}{105} a^{10} + \frac{1}{105} a^{9} - \frac{32}{105} a^{8} - \frac{52}{105} a^{7} + \frac{44}{105} a^{6} + \frac{32}{105} a^{5} - \frac{16}{45} a^{4} + \frac{8}{315} a^{3} - \frac{136}{315} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{1575} a^{14} + \frac{2}{1575} a^{13} - \frac{1}{525} a^{12} - \frac{1}{225} a^{10} - \frac{32}{225} a^{9} + \frac{212}{525} a^{8} - \frac{17}{35} a^{7} + \frac{82}{525} a^{6} - \frac{778}{1575} a^{5} + \frac{652}{1575} a^{4} - \frac{2}{35} a^{3} - \frac{13}{105} a^{2} - \frac{17}{63} a + \frac{20}{63}$, $\frac{1}{1575} a^{15} - \frac{2}{1575} a^{13} - \frac{4}{1575} a^{12} - \frac{17}{1575} a^{11} - \frac{2}{105} a^{10} + \frac{7}{225} a^{9} + \frac{211}{525} a^{8} - \frac{193}{525} a^{7} + \frac{4}{315} a^{6} - \frac{22}{75} a^{5} - \frac{379}{1575} a^{4} + \frac{1}{63} a^{3} + \frac{109}{315} a^{2} - \frac{4}{21} a + \frac{20}{63}$, $\frac{1}{143325} a^{16} + \frac{4}{143325} a^{15} + \frac{22}{143325} a^{14} - \frac{73}{47775} a^{13} - \frac{304}{28665} a^{12} + \frac{272}{143325} a^{11} + \frac{2306}{143325} a^{10} + \frac{7288}{143325} a^{9} - \frac{23201}{47775} a^{8} + \frac{5372}{20475} a^{7} - \frac{57643}{143325} a^{6} + \frac{65921}{143325} a^{5} - \frac{562}{15925} a^{4} - \frac{9314}{28665} a^{3} + \frac{12914}{28665} a^{2} - \frac{2222}{5733} a - \frac{2542}{5733}$, $\frac{1}{1458331875} a^{17} - \frac{3748}{1458331875} a^{16} + \frac{664}{26515125} a^{15} - \frac{328463}{1458331875} a^{14} - \frac{103108}{486110625} a^{13} + \frac{10161493}{1458331875} a^{12} + \frac{103997}{22435875} a^{11} + \frac{37495816}{1458331875} a^{10} + \frac{235603}{4487175} a^{9} + \frac{30632114}{208333125} a^{8} - \frac{679846}{22435875} a^{7} + \frac{5465951}{39414375} a^{6} - \frac{506908777}{1458331875} a^{5} + \frac{86356709}{486110625} a^{4} - \frac{2174582}{7882875} a^{3} - \frac{17061922}{58333275} a^{2} - \frac{12027394}{58333275} a - \frac{128809}{8333325}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93546.1279517 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.135.1 x3, 6.0.273375.1, 9.1.242137805625.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |