Normalized defining polynomial
\( x^{18} + 72 x^{14} - 96 x^{13} + 32 x^{12} + 1539 x^{10} - 4104 x^{9} + 4104 x^{8} - 1824 x^{7} + 9781 x^{6} - 37908 x^{5} + 63180 x^{4} - 56160 x^{3} + 28080 x^{2} - 7488 x + 832 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87651540491153387182800195727392768=-\,2^{30}\cdot 3^{18}\cdot 7^{12}\cdot 13^{5}\cdot 41\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{14} + \frac{3}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{3}{64} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{5}{64} a^{2} - \frac{5}{16} a + \frac{1}{16}$, $\frac{1}{512} a^{15} + \frac{1}{256} a^{14} + \frac{3}{64} a^{13} + \frac{7}{32} a^{12} - \frac{25}{64} a^{11} - \frac{15}{32} a^{10} - \frac{7}{16} a^{9} + \frac{3}{8} a^{8} - \frac{125}{512} a^{7} + \frac{127}{256} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{5}{512} a^{3} - \frac{5}{256} a^{2} - \frac{57}{128} a + \frac{17}{64}$, $\frac{1}{4096} a^{16} - \frac{1}{1024} a^{15} + \frac{3}{1024} a^{14} - \frac{1}{128} a^{13} + \frac{19}{512} a^{12} - \frac{9}{64} a^{11} + \frac{27}{64} a^{10} - \frac{1}{8} a^{9} + \frac{771}{4096} a^{8} - \frac{261}{1024} a^{7} + \frac{275}{1024} a^{6} - \frac{1}{2} a^{5} + \frac{1285}{4096} a^{4} + \frac{251}{512} a^{3} + \frac{107}{512} a^{2} + \frac{63}{128} a + \frac{13}{256}$, $\frac{1}{32768} a^{17} - \frac{1}{16384} a^{16} + \frac{1}{8192} a^{15} - \frac{1}{4096} a^{14} + \frac{11}{4096} a^{13} - \frac{17}{2048} a^{12} + \frac{9}{512} a^{11} - \frac{9}{256} a^{10} + \frac{3843}{32768} a^{9} - \frac{5895}{16384} a^{8} - \frac{1271}{8192} a^{7} + \frac{1043}{4096} a^{6} - \frac{6907}{32768} a^{5} + \frac{4337}{16384} a^{4} + \frac{1633}{4096} a^{3} + \frac{1001}{2048} a^{2} - \frac{247}{2048} a + \frac{13}{1024}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5955889539.76 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.1997632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | $18$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.24.45 | $x^{12} - 8 x^{11} - 6 x^{10} + 4 x^{9} - 6 x^{8} - 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{2} + 16 x - 8$ | $4$ | $3$ | $24$ | 12T89 | $[2, 2, 2, 3, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 41 | Data not computed | ||||||