Normalized defining polynomial
\( x^{18} - 7 x^{17} + 21 x^{16} - 10 x^{15} - 25 x^{14} - 337 x^{13} + 3019 x^{12} - 11321 x^{11} + 32356 x^{10} - 81340 x^{9} + 216453 x^{8} - 535373 x^{7} + 1224513 x^{6} - 2351635 x^{5} + 4043761 x^{4} - 5640557 x^{3} + 6680809 x^{2} - 5296030 x + 2999263 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87039873532075611618416695574933504=-\,2^{12}\cdot 11^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{87} a^{16} + \frac{2}{29} a^{14} + \frac{1}{29} a^{13} - \frac{7}{87} a^{12} + \frac{4}{87} a^{11} - \frac{3}{29} a^{10} - \frac{6}{29} a^{9} + \frac{1}{87} a^{8} - \frac{37}{87} a^{7} - \frac{16}{87} a^{6} + \frac{4}{87} a^{5} - \frac{5}{87} a^{4} - \frac{4}{87} a^{3} + \frac{19}{87} a^{2} - \frac{38}{87} a + \frac{7}{29}$, $\frac{1}{6235939549411415643432947475335681915097} a^{17} - \frac{8219229827781110904131208566619465097}{6235939549411415643432947475335681915097} a^{16} - \frac{56642825231309869726884884151664821500}{6235939549411415643432947475335681915097} a^{15} - \frac{340471757412363631610610811792331733403}{2078646516470471881144315825111893971699} a^{14} - \frac{40508340821479245628863263754363739862}{6235939549411415643432947475335681915097} a^{13} - \frac{493607256147469382680870383924399669571}{6235939549411415643432947475335681915097} a^{12} + \frac{2374359438449445171553243183587358567637}{6235939549411415643432947475335681915097} a^{11} + \frac{14321660611956086941303264631714720057}{6235939549411415643432947475335681915097} a^{10} + \frac{814544696858503363040532016591633029070}{6235939549411415643432947475335681915097} a^{9} + \frac{2409546649705596532253116819308329617705}{6235939549411415643432947475335681915097} a^{8} - \frac{303027539348394160677723179519411369342}{2078646516470471881144315825111893971699} a^{7} - \frac{2431962411928398636533647910100974713934}{6235939549411415643432947475335681915097} a^{6} - \frac{2084052038079738688758058010334127318306}{6235939549411415643432947475335681915097} a^{5} + \frac{908539509363021724998002520334958542240}{6235939549411415643432947475335681915097} a^{4} + \frac{1071891372928423395837466240522055048902}{6235939549411415643432947475335681915097} a^{3} + \frac{1096196369010306709646168307510594506921}{6235939549411415643432947475335681915097} a^{2} - \frac{3000937956219493447343600364774125202655}{6235939549411415643432947475335681915097} a - \frac{2019106963083356380326238662949554843752}{6235939549411415643432947475335681915097}$
Class group and class number
$C_{2}\times C_{6}\times C_{24}\times C_{72}$, which has order $20736$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.1369.1, 3.3.148.1, 6.0.29154224.2, 6.0.2494508291.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |