Normalized defining polynomial
\( x^{18} - 6 x^{17} - 33 x^{16} + 159 x^{15} + 888 x^{14} - 1764 x^{13} - 14358 x^{12} - 1179 x^{11} + 126270 x^{10} + 183507 x^{9} - 479694 x^{8} - 1369188 x^{7} + 769082 x^{6} + 6557943 x^{5} + 8110695 x^{4} + 2018409 x^{3} + 2671494 x^{2} + 13292223 x + 12643463 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-865558748289981242920101560093583=-\,3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 167^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{256949140988726751472820790847626784690960451786812} a^{17} + \frac{14283073303616013541406979000485120966220727746945}{256949140988726751472820790847626784690960451786812} a^{16} + \frac{30136706063157814402128098829181407707972053403669}{128474570494363375736410395423813392345480225893406} a^{15} - \frac{34863157059647650098053813658838348453691712992465}{256949140988726751472820790847626784690960451786812} a^{14} + \frac{49703498304792469361129955134415944899061209692803}{256949140988726751472820790847626784690960451786812} a^{13} - \frac{7143435797989185331560215419235479547061875011921}{256949140988726751472820790847626784690960451786812} a^{12} + \frac{23743639099032985973829522328510222061578074941547}{256949140988726751472820790847626784690960451786812} a^{11} - \frac{32014957267427055278117521266462852402830421571027}{128474570494363375736410395423813392345480225893406} a^{10} + \frac{17941479206946262914563106770308896567733278573351}{128474570494363375736410395423813392345480225893406} a^{9} + \frac{102465272189526069314739392499262545246686875911553}{256949140988726751472820790847626784690960451786812} a^{8} - \frac{74350147526944523423995984844313786607728360953441}{256949140988726751472820790847626784690960451786812} a^{7} + \frac{64917638335451454849234007007057261248805296108933}{256949140988726751472820790847626784690960451786812} a^{6} + \frac{82365809767467084452212495770044777814227827467405}{256949140988726751472820790847626784690960451786812} a^{5} - \frac{205442241369579668653164300576888950637648190848}{773943195749176962267532502553092724972772445141} a^{4} + \frac{1385972717730253505013869276081958398532905405651}{256949140988726751472820790847626784690960451786812} a^{3} + \frac{28313226374015889547563068681181631520703385506485}{64237285247181687868205197711906696172740112946703} a^{2} - \frac{338326208763623187611841296207792942740346594762}{773943195749176962267532502553092724972772445141} a + \frac{97974968551400109100278044916831164416378827980803}{256949140988726751472820790847626784690960451786812}$
Class group and class number
$C_{12}\times C_{168}$, which has order $2016$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1152993.7459 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 56 conjugacy class representatives for t18n282 are not computed |
| Character table for t18n282 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.400967.1, 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 167 | Data not computed | ||||||