Normalized defining polynomial
\( x^{18} - 75 x^{16} - 54 x^{15} + 3114 x^{14} - 5400 x^{13} - 55742 x^{12} + 206604 x^{11} + 583197 x^{10} - 4183416 x^{9} + 21698505 x^{8} - 78893766 x^{7} + 105153016 x^{6} + 658281600 x^{5} - 1952795136 x^{4} + 1597948416 x^{3} - 4097894400 x^{2} - 27902361600 x + 109314048000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-863907756858622745144456333032042876658884599=-\,3^{27}\cdot 13^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $313.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2223=3^{2}\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2223}(1,·)$, $\chi_{2223}(391,·)$, $\chi_{2223}(524,·)$, $\chi_{2223}(140,·)$, $\chi_{2223}(1616,·)$, $\chi_{2223}(1426,·)$, $\chi_{2223}(919,·)$, $\chi_{2223}(1816,·)$, $\chi_{2223}(1793,·)$, $\chi_{2223}(1949,·)$, $\chi_{2223}(296,·)$, $\chi_{2223}(1388,·)$, $\chi_{2223}(368,·)$, $\chi_{2223}(818,·)$, $\chi_{2223}(1717,·)$, $\chi_{2223}(1654,·)$, $\chi_{2223}(1147,·)$, $\chi_{2223}(2044,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{6} + \frac{1}{32} a^{5} + \frac{1}{32} a^{4} + \frac{7}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{7} - \frac{1}{16} a^{5} + \frac{1}{32} a^{4} + \frac{11}{64} a^{3} + \frac{7}{32} a^{2} - \frac{3}{8} a$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} + \frac{1}{32} a^{5} + \frac{5}{128} a^{4} - \frac{5}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} + \frac{1}{128} a^{6} - \frac{11}{256} a^{5} - \frac{9}{256} a^{4} - \frac{27}{128} a^{3} + \frac{1}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{1024} a^{10} + \frac{1}{1024} a^{9} - \frac{1}{512} a^{7} + \frac{13}{1024} a^{6} + \frac{17}{1024} a^{5} - \frac{7}{512} a^{4} + \frac{11}{64} a^{3} + \frac{3}{16} a^{2} - \frac{3}{8} a$, $\frac{1}{4096} a^{11} - \frac{1}{2048} a^{10} - \frac{3}{4096} a^{9} + \frac{7}{2048} a^{8} + \frac{3}{4096} a^{7} - \frac{11}{2048} a^{6} + \frac{223}{4096} a^{5} - \frac{107}{2048} a^{4} + \frac{9}{128} a^{3} - \frac{17}{128} a^{2} + \frac{1}{16} a$, $\frac{1}{4096} a^{12} + \frac{1}{4096} a^{10} + \frac{15}{4096} a^{8} - \frac{1}{128} a^{7} + \frac{59}{4096} a^{6} + \frac{5}{128} a^{5} - \frac{3}{1024} a^{4} + \frac{1}{32} a^{3} - \frac{5}{64} a^{2}$, $\frac{1}{327680} a^{13} + \frac{5}{65536} a^{12} + \frac{27}{327680} a^{11} - \frac{11}{327680} a^{10} + \frac{353}{327680} a^{9} + \frac{979}{327680} a^{8} + \frac{1481}{327680} a^{7} + \frac{4311}{327680} a^{6} + \frac{333}{163840} a^{5} + \frac{793}{40960} a^{4} - \frac{499}{2048} a^{3} + \frac{69}{512} a^{2} - \frac{43}{320} a$, $\frac{1}{327680} a^{14} - \frac{19}{163840} a^{12} + \frac{17}{163840} a^{11} + \frac{17}{81920} a^{10} + \frac{277}{163840} a^{9} + \frac{303}{163840} a^{8} + \frac{1043}{163840} a^{7} - \frac{3829}{327680} a^{6} - \frac{233}{163840} a^{5} - \frac{493}{8192} a^{4} - \frac{385}{2048} a^{3} - \frac{629}{2560} a^{2} + \frac{19}{64} a$, $\frac{1}{5242880} a^{15} + \frac{1}{2621440} a^{14} - \frac{93}{1310720} a^{12} - \frac{299}{2621440} a^{11} + \frac{17}{327680} a^{10} - \frac{609}{655360} a^{9} - \frac{39}{262144} a^{8} - \frac{10739}{5242880} a^{7} - \frac{8873}{2621440} a^{6} + \frac{7141}{327680} a^{5} + \frac{3563}{81920} a^{4} + \frac{3993}{20480} a^{3} - \frac{717}{10240} a^{2} + \frac{149}{1280} a - \frac{1}{2}$, $\frac{1}{10485760} a^{16} - \frac{1}{10485760} a^{15} - \frac{3}{5242880} a^{14} + \frac{3}{2621440} a^{13} + \frac{579}{5242880} a^{12} + \frac{457}{5242880} a^{11} + \frac{521}{1310720} a^{10} + \frac{5027}{2621440} a^{9} - \frac{10063}{10485760} a^{8} + \frac{3227}{2097152} a^{7} + \frac{36579}{5242880} a^{6} + \frac{35133}{655360} a^{5} - \frac{4773}{163840} a^{4} + \frac{10027}{40960} a^{3} + \frac{1823}{20480} a^{2} - \frac{163}{512} a - \frac{1}{4}$, $\frac{1}{18004831016951519765309512048857639917977600} a^{17} + \frac{93434172904634419833293108322966479}{3600966203390303953061902409771527983595520} a^{16} - \frac{85591535298193173376045298754275813}{1800483101695151976530951204885763991797760} a^{15} - \frac{6179732447203509996466639785910063071}{4501207754237879941327378012214409979494400} a^{14} + \frac{3963795668956123215437574617242985547}{9002415508475759882654756024428819958988800} a^{13} - \frac{5221267007921160446983347737724936203}{360096620339030395306190240977152798359552} a^{12} + \frac{2380950016820339251614142906521587759}{562650969279734992665922251526801247436800} a^{11} + \frac{942081456248506191428817277408980522971}{4501207754237879941327378012214409979494400} a^{10} - \frac{16812344403392761715481821715795011308863}{18004831016951519765309512048857639917977600} a^{9} - \frac{33219348665154095508630002155870460209581}{18004831016951519765309512048857639917977600} a^{8} + \frac{4739737111336969872015090683867037614777}{1800483101695151976530951204885763991797760} a^{7} - \frac{4893316650319252429322363462966337499237}{2250603877118939970663689006107204989747200} a^{6} + \frac{8511465622138188668175448853601723466057}{140662742319933748166480562881700311859200} a^{5} - \frac{26797364271508782022799309502672906397}{703313711599668740832402814408501559296} a^{4} + \frac{2972618518679411012553266772923378626977}{35165685579983437041620140720425077964800} a^{3} - \frac{60814732361281783654027900101500472153}{8791421394995859260405035180106269491200} a^{2} + \frac{42006501844340631915506028288830742159}{219785534874896481510125879502656737280} a + \frac{136768770474572031909820979980466329}{343414898242025752359571686722901152}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{34539492}$, which has order $552631872$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 931139254937.0632 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.29241.1, 3.3.4941729.3, 3.3.61009.1, 3.3.13689.1, 6.0.5635542809871.3, 6.0.952406734868199.1, 6.0.1306456426431.2, 6.0.7308160119.1, 9.9.120680409781884363489.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $13$ | 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||