Normalized defining polynomial
\( x^{18} - 7 x^{17} + 111 x^{16} - 570 x^{15} + 5575 x^{14} - 24157 x^{13} + 183489 x^{12} - 702801 x^{11} + 4348726 x^{10} - 14614200 x^{9} + 74356953 x^{8} - 212878813 x^{7} + 887867263 x^{6} - 2056738955 x^{5} + 6915161271 x^{4} - 11750894177 x^{3} + 30681517019 x^{2} - 29651248130 x + 55649538283 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-86161979862499093345337569390232247250944=-\,2^{12}\cdot 3^{9}\cdot 17^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $188.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1860798385273780992178312145190569588022207487388389716922342519} a^{17} - \frac{209817419592596421331401922836019362743053364439625187274048634}{1860798385273780992178312145190569588022207487388389716922342519} a^{16} + \frac{238190158189796000517015567025337838125079310864032547624293976}{1860798385273780992178312145190569588022207487388389716922342519} a^{15} - \frac{688186739326897166610648812174449445628036170351676655713158040}{1860798385273780992178312145190569588022207487388389716922342519} a^{14} + \frac{24622407363826442022309774661111884229638847380837670461398595}{64165461561164861799252142937605847862834740944427231618011811} a^{13} - \frac{4428646874112368839757143424495438205024071629671703968905381}{64165461561164861799252142937605847862834740944427231618011811} a^{12} + \frac{155007129007892488479509496401659642587808546924850437005481192}{1860798385273780992178312145190569588022207487388389716922342519} a^{11} - \frac{375071604695367476102972363853921158305521440355040642533970656}{1860798385273780992178312145190569588022207487388389716922342519} a^{10} - \frac{204566238394311255856682099846420781182537843367041563035877494}{1860798385273780992178312145190569588022207487388389716922342519} a^{9} + \frac{177156603835476772989729739748145910292734181999705115397877666}{1860798385273780992178312145190569588022207487388389716922342519} a^{8} - \frac{616977353120747115886722558833115591316728981914100867036633562}{1860798385273780992178312145190569588022207487388389716922342519} a^{7} - \frac{611251105466285246951216522760101901156976267567769585185994368}{1860798385273780992178312145190569588022207487388389716922342519} a^{6} - \frac{4540035605491840864537706805393066548951217518714269566929039}{1860798385273780992178312145190569588022207487388389716922342519} a^{5} - \frac{368493070498522576176795239341640970568065221020399973698608172}{1860798385273780992178312145190569588022207487388389716922342519} a^{4} - \frac{474036274171068554227701661045757909526948051405852251321445541}{1860798385273780992178312145190569588022207487388389716922342519} a^{3} - \frac{522568902629058503660208016630200484634436747008403966500045817}{1860798385273780992178312145190569588022207487388389716922342519} a^{2} + \frac{892786471161841305634295929215521643563627020632858194270024149}{1860798385273780992178312145190569588022207487388389716922342519} a + \frac{299491241882148549995266452116051100518739240363710836009809983}{1860798385273780992178312145190569588022207487388389716922342519}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1940166}$, which has order $15521328$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 3.3.1369.1, 3.3.148.1, 6.0.248609330811.4, 6.0.2905587504.4, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |