Normalized defining polynomial
\( x^{18} + 9 x^{16} - 16 x^{15} + 360 x^{14} + 240 x^{13} + 3928 x^{12} - 1680 x^{11} + 49218 x^{10} + 47424 x^{9} + 559842 x^{8} + 375408 x^{7} + 3618320 x^{6} + 3283728 x^{5} + 27436416 x^{4} + 39093488 x^{3} + 139982661 x^{2} + 126029568 x + 236250749 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8610038236258048513179648000000000=-\,2^{24}\cdot 3^{18}\cdot 5^{9}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{8} + \frac{3}{16} a^{4} - \frac{5}{16}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{4} + \frac{1}{16} a^{2} + \frac{3}{8}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{3}{32} a^{7} - \frac{3}{32} a^{6} - \frac{3}{32} a^{5} - \frac{3}{32} a^{4} - \frac{5}{32} a^{3} + \frac{5}{32} a^{2} + \frac{5}{32} a + \frac{5}{32}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{8} - \frac{1}{4} a^{4} + \frac{5}{32}$, $\frac{1}{16775730791919220110012737596826913695923546528} a^{17} - \frac{106820407968028326517768844645377510361988437}{8387865395959610055006368798413456847961773264} a^{16} + \frac{3351752324860183228765419616641907012359181}{1048483174494951256875796099801682105995221658} a^{15} - \frac{50406294069344825594400578746773996871344483}{8387865395959610055006368798413456847961773264} a^{14} - \frac{48330514033466900801089913073024095804433733}{4193932697979805027503184399206728423980886632} a^{13} + \frac{44431205467647721733986485992034717022241653}{4193932697979805027503184399206728423980886632} a^{12} + \frac{42163177152005547940646631281968765462274403}{4193932697979805027503184399206728423980886632} a^{11} - \frac{381493818139190139976172632285864620264612319}{8387865395959610055006368798413456847961773264} a^{10} - \frac{59647598557775674491557417471749705631095145}{8387865395959610055006368798413456847961773264} a^{9} - \frac{138690521716023813062310291600359041721214523}{4193932697979805027503184399206728423980886632} a^{8} + \frac{204755160994134859652066673087526175904436425}{2096966348989902513751592199603364211990443316} a^{7} - \frac{172514477598462588775126839455422179882496437}{8387865395959610055006368798413456847961773264} a^{6} + \frac{692848950115682669129625970635058985782292623}{4193932697979805027503184399206728423980886632} a^{5} + \frac{760578839535056928309489222519978236487124615}{4193932697979805027503184399206728423980886632} a^{4} - \frac{233707856584695550955230781545931248306760897}{4193932697979805027503184399206728423980886632} a^{3} + \frac{3259140932086318963782562598993828584471502295}{8387865395959610055006368798413456847961773264} a^{2} + \frac{5158552604473357032226056010493286052899268713}{16775730791919220110012737596826913695923546528} a + \frac{2105932758339427727124473271289162147879316067}{8387865395959610055006368798413456847961773264}$
Class group and class number
$C_{6}\times C_{6}\times C_{378}$, which has order $13608$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{7})^+\), 3.3.756.1, 6.0.1143072000.8, 6.0.19208000.1, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |