Normalized defining polynomial
\( x^{18} - 3 x^{17} - 78 x^{16} + 108 x^{15} + 2664 x^{14} - 12 x^{13} - 41898 x^{12} - 26646 x^{11} + 339819 x^{10} + 315807 x^{9} - 1018584 x^{8} + 613290 x^{7} + 6179676 x^{6} + 3729264 x^{5} + 5211552 x^{4} + 12964608 x^{3} + 42863616 x^{2} + 761856 x + 107610112 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8575646213021703940521028812918699203493888=-\,2^{18}\cdot 3^{30}\cdot 7^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} + \frac{7}{32} a^{5} - \frac{1}{8} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{32} a^{7} - \frac{3}{32} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{64} a^{8} - \frac{1}{8} a^{7} + \frac{5}{64} a^{6} - \frac{1}{32} a^{5} - \frac{3}{32} a^{4} - \frac{5}{16} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{1}{128} a^{11} - \frac{1}{128} a^{10} + \frac{3}{128} a^{9} + \frac{7}{128} a^{8} - \frac{3}{128} a^{7} - \frac{7}{128} a^{6} - \frac{1}{32} a^{5} + \frac{1}{64} a^{4} - \frac{7}{32} a^{3} + \frac{1}{4} a$, $\frac{1}{512} a^{14} + \frac{1}{512} a^{13} - \frac{1}{512} a^{12} - \frac{3}{512} a^{11} - \frac{1}{512} a^{10} - \frac{23}{512} a^{9} - \frac{19}{512} a^{8} - \frac{29}{512} a^{7} - \frac{5}{64} a^{6} - \frac{37}{256} a^{5} - \frac{9}{128} a^{4} + \frac{3}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{111616} a^{15} - \frac{39}{55808} a^{14} - \frac{57}{27904} a^{13} - \frac{5}{13952} a^{12} + \frac{7}{1744} a^{11} + \frac{317}{27904} a^{10} - \frac{259}{55808} a^{9} + \frac{7}{256} a^{8} + \frac{9159}{111616} a^{7} + \frac{2409}{55808} a^{6} + \frac{377}{55808} a^{5} + \frac{2105}{27904} a^{4} - \frac{217}{6976} a^{3} + \frac{1303}{3488} a^{2} - \frac{193}{436} a + \frac{43}{109}$, $\frac{1}{15514624} a^{16} + \frac{31}{15514624} a^{15} + \frac{597}{3878656} a^{14} - \frac{18223}{7757312} a^{13} + \frac{18645}{7757312} a^{12} - \frac{32611}{7757312} a^{11} - \frac{5169}{969664} a^{10} + \frac{151}{35584} a^{9} - \frac{682119}{15514624} a^{8} + \frac{755719}{15514624} a^{7} - \frac{270949}{3878656} a^{6} - \frac{1759519}{7757312} a^{5} + \frac{90147}{3878656} a^{4} + \frac{340833}{969664} a^{3} - \frac{166243}{484832} a^{2} - \frac{4099}{15151} a - \frac{16}{139}$, $\frac{1}{2331915440326290428610091720544486973104128} a^{17} + \frac{47231202009781093524138114458308365}{2331915440326290428610091720544486973104128} a^{16} + \frac{4803122162036200129449975394614388765}{1165957720163145214305045860272243486552064} a^{15} + \frac{146954354070255834025628434297568422899}{582978860081572607152522930136121743276032} a^{14} + \frac{431264930315035747554569519542769356027}{291489430040786303576261465068060871638016} a^{13} - \frac{758982348874490130747520804323689304311}{582978860081572607152522930136121743276032} a^{12} + \frac{4013634816956305117845734421279262645939}{1165957720163145214305045860272243486552064} a^{11} + \frac{9647721978890140923275360683732932988173}{1165957720163145214305045860272243486552064} a^{10} + \frac{63573837451429681469068851288196344933195}{2331915440326290428610091720544486973104128} a^{9} - \frac{67125287826721343422430076608938591935553}{2331915440326290428610091720544486973104128} a^{8} - \frac{10702559815446220741620486955892772447819}{145744715020393151788130732534030435819008} a^{7} + \frac{83289437704830566476344917291242186871917}{1165957720163145214305045860272243486552064} a^{6} + \frac{62677253319508541621712517773495059089011}{582978860081572607152522930136121743276032} a^{5} + \frac{2423669879869172997361757447237587324581}{145744715020393151788130732534030435819008} a^{4} - \frac{7889338063323892755953300216533647610831}{72872357510196575894065366267015217909504} a^{3} + \frac{594698146618047490069505441277696681523}{2277261172193642996689542695844225559672} a^{2} - \frac{678613188205048270579452403240481844443}{2277261172193642996689542695844225559672} a + \frac{135116986084013519478713036102026536360}{284657646524205374586192836980528194959}$
Class group and class number
$C_{5}\times C_{30}\times C_{442890}$, which has order $66433500$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3533133948.6916637 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.13689.1, 3.3.2808.1, 6.0.64274331303.4, 6.0.2704508352.7, 9.9.460990789028310528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.12.10.2 | $x^{12} + 39 x^{6} + 676$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |