Normalized defining polynomial
\( x^{18} - 2 x^{16} + 47 x^{14} - 98 x^{12} + 427 x^{10} + 2890 x^{8} + 4998 x^{6} + 4004 x^{4} + 1997 x^{2} + 983 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-857001654756864267001092503=-\,983^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{650} a^{14} + \frac{27}{650} a^{12} + \frac{51}{650} a^{10} - \frac{76}{325} a^{8} + \frac{33}{130} a^{6} - \frac{1}{2} a^{5} + \frac{154}{325} a^{4} + \frac{12}{65} a^{2} + \frac{126}{325}$, $\frac{1}{650} a^{15} + \frac{27}{650} a^{13} + \frac{51}{650} a^{11} - \frac{76}{325} a^{9} + \frac{33}{130} a^{7} - \frac{1}{2} a^{6} + \frac{154}{325} a^{5} + \frac{12}{65} a^{3} + \frac{126}{325} a$, $\frac{1}{13429573465750} a^{16} - \frac{679039662}{1342957346575} a^{14} + \frac{295673710516}{6714786732875} a^{12} + \frac{2027321353901}{13429573465750} a^{10} + \frac{1608721426809}{13429573465750} a^{8} - \frac{1}{2} a^{7} + \frac{2322441561403}{13429573465750} a^{6} - \frac{1}{2} a^{5} - \frac{3146660032778}{6714786732875} a^{4} + \frac{1946650267481}{6714786732875} a^{2} + \frac{336804427303}{6714786732875}$, $\frac{1}{13429573465750} a^{17} - \frac{679039662}{1342957346575} a^{15} + \frac{295673710516}{6714786732875} a^{13} + \frac{2027321353901}{13429573465750} a^{11} + \frac{1608721426809}{13429573465750} a^{9} - \frac{1}{2} a^{8} + \frac{2322441561403}{13429573465750} a^{7} - \frac{1}{2} a^{6} - \frac{3146660032778}{6714786732875} a^{5} + \frac{1946650267481}{6714786732875} a^{3} + \frac{336804427303}{6714786732875} a$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 387296.574069 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-983}) \), 3.1.983.1 x3, 6.0.949862087.1, 9.1.933714431521.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{18}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 983 | Data not computed | ||||||