Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 102 x^{15} + 117 x^{14} + 243 x^{13} - 1317 x^{12} + 2565 x^{11} - 2241 x^{10} - 1527 x^{9} + 8532 x^{8} - 13725 x^{7} + 11169 x^{6} - 5184 x^{5} + 6561 x^{4} - 14814 x^{3} + 18306 x^{2} - 11799 x + 3249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8549394874383196572862347=-\,3^{31}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{9} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{684} a^{14} - \frac{1}{36} a^{13} + \frac{1}{684} a^{12} - \frac{11}{342} a^{11} - \frac{2}{57} a^{10} - \frac{3}{38} a^{9} + \frac{1}{19} a^{8} + \frac{53}{228} a^{7} + \frac{67}{228} a^{6} + \frac{91}{228} a^{5} + \frac{4}{57} a^{4} - \frac{4}{57} a^{3} - \frac{17}{57} a^{2} - \frac{15}{76} a + \frac{1}{4}$, $\frac{1}{1368} a^{15} + \frac{5}{342} a^{13} + \frac{73}{1368} a^{12} - \frac{31}{684} a^{11} + \frac{29}{228} a^{10} + \frac{25}{228} a^{9} + \frac{205}{456} a^{8} - \frac{71}{228} a^{7} - \frac{13}{38} a^{6} + \frac{73}{456} a^{5} - \frac{23}{114} a^{4} + \frac{1}{57} a^{3} - \frac{121}{456} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{2736} a^{16} - \frac{1}{2736} a^{15} - \frac{23}{2736} a^{13} - \frac{1}{912} a^{12} + \frac{17}{684} a^{11} - \frac{1}{6} a^{10} - \frac{31}{304} a^{9} - \frac{283}{912} a^{8} - \frac{27}{152} a^{7} - \frac{47}{912} a^{6} - \frac{313}{912} a^{5} - \frac{55}{228} a^{4} + \frac{13}{304} a^{3} + \frac{151}{912} a^{2} - \frac{137}{304} a - \frac{3}{16}$, $\frac{1}{27389019805344} a^{17} - \frac{392072843}{13694509902672} a^{16} - \frac{5833112123}{27389019805344} a^{15} - \frac{18733730959}{27389019805344} a^{14} - \frac{91703257417}{3423627475668} a^{13} + \frac{472846705787}{27389019805344} a^{12} - \frac{31473323417}{2282418317112} a^{11} + \frac{401982540265}{3043224422816} a^{10} + \frac{749151364339}{4564836634224} a^{9} + \frac{4107262706629}{9129673268448} a^{8} - \frac{1461395756653}{9129673268448} a^{7} + \frac{628061644445}{4564836634224} a^{6} - \frac{111978097799}{9129673268448} a^{5} + \frac{1231758155891}{9129673268448} a^{4} - \frac{211530893507}{2282418317112} a^{3} + \frac{317719472947}{1521612211408} a^{2} - \frac{13816242753}{760806105704} a - \frac{44302321081}{160169706464}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{227408632249}{27389019805344} a^{17} + \frac{66961783627}{1141209158556} a^{16} - \frac{1856361128641}{9129673268448} a^{15} + \frac{3766377867181}{9129673268448} a^{14} - \frac{650732735563}{13694509902672} a^{13} - \frac{63640935338333}{27389019805344} a^{12} + \frac{4771536787567}{760806105704} a^{11} - \frac{22757010960057}{3043224422816} a^{10} + \frac{292285700021}{380403052852} a^{9} + \frac{155124436791241}{9129673268448} a^{8} - \frac{329488482150119}{9129673268448} a^{7} + \frac{37435709013611}{1141209158556} a^{6} - \frac{36510862387373}{3043224422816} a^{5} + \frac{92667622137917}{9129673268448} a^{4} - \frac{152427688335587}{4564836634224} a^{3} + \frac{9467240272045}{190201526426} a^{2} - \frac{53386380343923}{1521612211408} a + \frac{1449466872047}{160169706464} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 636348.279995 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1323.1 x3, \(\Q(\zeta_{9})^+\), 6.0.5250987.1, 6.0.47258883.3 x2, \(\Q(\zeta_{9})\), 9.3.1688134559643.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.47258883.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |