Normalized defining polynomial
\( x^{18} - 9 x^{17} + 63 x^{16} - 300 x^{15} + 1194 x^{14} - 3822 x^{13} + 10548 x^{12} - 24600 x^{11} + 50088 x^{10} - 87574 x^{9} + 133758 x^{8} - 175122 x^{7} + 198099 x^{6} - 188391 x^{5} + 150321 x^{4} - 95718 x^{3} + 47184 x^{2} - 15720 x + 2512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8549394874383196572862347=-\,3^{31}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{128} a^{14} - \frac{7}{128} a^{13} - \frac{3}{128} a^{12} + \frac{13}{128} a^{11} + \frac{13}{128} a^{10} - \frac{15}{128} a^{9} - \frac{13}{128} a^{8} + \frac{27}{128} a^{7} - \frac{17}{128} a^{6} + \frac{7}{128} a^{5} - \frac{9}{128} a^{4} - \frac{13}{128} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{5}{16}$, $\frac{1}{128} a^{15} - \frac{1}{32} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} - \frac{1}{32} a^{10} + \frac{5}{64} a^{9} - \frac{1}{32} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{1}{32} a^{4} - \frac{59}{128} a^{3} + \frac{1}{8} a^{2} - \frac{3}{16} a - \frac{3}{16}$, $\frac{1}{256} a^{16} + \frac{3}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{16} a^{11} - \frac{9}{128} a^{10} + \frac{1}{64} a^{9} + \frac{1}{32} a^{8} + \frac{3}{64} a^{7} + \frac{1}{64} a^{6} - \frac{1}{4} a^{5} + \frac{49}{256} a^{4} - \frac{9}{64} a^{3} - \frac{11}{32} a^{2} + \frac{5}{32} a + \frac{3}{8}$, $\frac{1}{789248} a^{17} + \frac{1533}{789248} a^{16} - \frac{89}{98656} a^{15} - \frac{41}{49328} a^{14} + \frac{11007}{197312} a^{13} + \frac{1137}{49328} a^{12} + \frac{12905}{394624} a^{11} - \frac{19721}{394624} a^{10} + \frac{5559}{49328} a^{9} - \frac{1925}{24664} a^{8} + \frac{45779}{197312} a^{7} + \frac{10963}{49328} a^{6} - \frac{90323}{789248} a^{5} + \frac{14629}{789248} a^{4} - \frac{36753}{98656} a^{3} + \frac{24523}{49328} a^{2} + \frac{5757}{98656} a - \frac{405}{3083}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{525}{197312} a^{17} + \frac{8925}{394624} a^{16} - \frac{30073}{197312} a^{15} + \frac{272595}{394624} a^{14} - \frac{1029537}{394624} a^{13} + \frac{3099083}{394624} a^{12} - \frac{7945821}{394624} a^{11} + \frac{17005989}{394624} a^{10} - \frac{31086853}{394624} a^{9} + \frac{47819073}{394624} a^{8} - \frac{61777659}{394624} a^{7} + \frac{65800489}{394624} a^{6} - \frac{55614333}{394624} a^{5} + \frac{17828517}{197312} a^{4} - \frac{13802845}{394624} a^{3} + \frac{138867}{49328} a^{2} + \frac{420201}{49328} a - \frac{151429}{49328} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 980950.022268 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1323.1 x3, 3.3.3969.1, 6.0.5250987.1, 6.0.964467.3 x2, 6.0.47258883.2, 9.3.1688134559643.5 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.964467.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |