Normalized defining polynomial
\( x^{18} - 9 x^{17} + 153 x^{16} - 1020 x^{15} + 10008 x^{14} - 52920 x^{13} + 380112 x^{12} - 1636470 x^{11} + 9357696 x^{10} - 32934506 x^{9} + 155739987 x^{8} - 441398538 x^{7} + 1756678785 x^{6} - 3847455189 x^{5} + 12957858630 x^{4} - 19961087904 x^{3} + 56678803083 x^{2} - 47273111433 x + 111738707823 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8531066207949676048491159248909849259=-\,3^{44}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1593=3^{3}\cdot 59\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1593}(1,·)$, $\chi_{1593}(1474,·)$, $\chi_{1593}(709,·)$, $\chi_{1593}(1417,·)$, $\chi_{1593}(589,·)$, $\chi_{1593}(1297,·)$, $\chi_{1593}(532,·)$, $\chi_{1593}(1240,·)$, $\chi_{1593}(412,·)$, $\chi_{1593}(1120,·)$, $\chi_{1593}(355,·)$, $\chi_{1593}(1063,·)$, $\chi_{1593}(235,·)$, $\chi_{1593}(943,·)$, $\chi_{1593}(178,·)$, $\chi_{1593}(886,·)$, $\chi_{1593}(58,·)$, $\chi_{1593}(766,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{72793838858411957827636788005895881920980254945155555755331008097} a^{17} - \frac{33153666407187712793946527426894516515073682562230361600361870552}{72793838858411957827636788005895881920980254945155555755331008097} a^{16} - \frac{12986995166326504504301305504471219127494268729279444361231264766}{72793838858411957827636788005895881920980254945155555755331008097} a^{15} - \frac{20551975574648852127787061207064214754548753357017604748526843994}{72793838858411957827636788005895881920980254945155555755331008097} a^{14} + \frac{18361543181276343700979771944048282911399831949966762178033253634}{72793838858411957827636788005895881920980254945155555755331008097} a^{13} + \frac{31018267645696258349707667115229261128914711509953263365588355779}{72793838858411957827636788005895881920980254945155555755331008097} a^{12} - \frac{160163775336223142298386382690992102896064136122499711871636507}{72793838858411957827636788005895881920980254945155555755331008097} a^{11} + \frac{5605423820588706499199556571131411387279406871013074851641324221}{72793838858411957827636788005895881920980254945155555755331008097} a^{10} + \frac{22158990491105760063827765409220715728156186731855439664319052692}{72793838858411957827636788005895881920980254945155555755331008097} a^{9} + \frac{20990663755681641327581335526160681008396632563775633380193967248}{72793838858411957827636788005895881920980254945155555755331008097} a^{8} + \frac{26900858387646247640178321829260025053639820325879593517969892412}{72793838858411957827636788005895881920980254945155555755331008097} a^{7} - \frac{15975729878741841856167932626587784771471852356516448092192654076}{72793838858411957827636788005895881920980254945155555755331008097} a^{6} + \frac{35498053809403255248111790932469113174351509944789325548884629359}{72793838858411957827636788005895881920980254945155555755331008097} a^{5} + \frac{7420366810390473432687995296846341724425778630049347969225241614}{72793838858411957827636788005895881920980254945155555755331008097} a^{4} + \frac{16322079467558656332712644261917571722284731422094948177454115984}{72793838858411957827636788005895881920980254945155555755331008097} a^{3} + \frac{29872140898889054412664422064327004385508571538167151186331167094}{72793838858411957827636788005895881920980254945155555755331008097} a^{2} - \frac{3934414074570091889458760671841035493187612098441735426343424696}{72793838858411957827636788005895881920980254945155555755331008097} a + \frac{11014467074120477734827776481760159739849549153095327411145136}{680316251013195867548007364541083008607292102291173418274121571}$
Class group and class number
$C_{4140423}$, which has order $4140423$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), \(\Q(\zeta_{9})^+\), 6.0.1347491619.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 59 | Data not computed | ||||||