Normalized defining polynomial
\( x^{18} + 14 x^{16} - 16 x^{15} + 462 x^{14} + 124 x^{13} + 9178 x^{12} + 6384 x^{11} + 146137 x^{10} + 123252 x^{9} + 1740052 x^{8} + 1558324 x^{7} + 15348721 x^{6} + 12244424 x^{5} + 93696170 x^{4} + 51485984 x^{3} + 356716588 x^{2} + 95100288 x + 652602712 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-851918174186670722606904836351852544=-\,2^{27}\cdot 3^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2184=2^{3}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(1537,·)$, $\chi_{2184}(841,·)$, $\chi_{2184}(653,·)$, $\chi_{2184}(1901,·)$, $\chi_{2184}(529,·)$, $\chi_{2184}(1849,·)$, $\chi_{2184}(989,·)$, $\chi_{2184}(289,·)$, $\chi_{2184}(1829,·)$, $\chi_{2184}(1873,·)$, $\chi_{2184}(365,·)$, $\chi_{2184}(29,·)$, $\chi_{2184}(625,·)$, $\chi_{2184}(1205,·)$, $\chi_{2184}(1465,·)$, $\chi_{2184}(893,·)$, $\chi_{2184}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} + \frac{1}{20} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{4} a^{5} + \frac{2}{5} a^{4} - \frac{7}{20} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} + \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{4} a^{6} + \frac{2}{5} a^{5} - \frac{7}{20} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a$, $\frac{1}{60} a^{14} - \frac{1}{60} a^{13} + \frac{7}{60} a^{11} - \frac{1}{15} a^{10} + \frac{1}{10} a^{9} + \frac{1}{20} a^{8} - \frac{1}{2} a^{7} - \frac{19}{60} a^{6} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{7}{60} a^{3} - \frac{7}{15} a^{2} - \frac{11}{30} a - \frac{2}{15}$, $\frac{1}{5495809140} a^{15} - \frac{11874767}{1831936380} a^{14} - \frac{6795187}{5495809140} a^{13} - \frac{33447989}{1373952285} a^{12} + \frac{30725141}{1831936380} a^{11} + \frac{199121611}{2747904570} a^{10} + \frac{7850672}{457984095} a^{9} - \frac{15154091}{122129092} a^{8} + \frac{1907269301}{5495809140} a^{7} - \frac{323433073}{1831936380} a^{6} - \frac{686297159}{1373952285} a^{5} - \frac{1116028387}{5495809140} a^{4} + \frac{251690279}{2747904570} a^{3} + \frac{412626562}{1373952285} a^{2} - \frac{52927571}{457984095} a - \frac{235847624}{1373952285}$, $\frac{1}{11936897452080} a^{16} - \frac{83}{2984224363020} a^{15} + \frac{11639721139}{1492112181510} a^{14} - \frac{762688151}{55263414130} a^{13} - \frac{55392056917}{5968448726040} a^{12} + \frac{5886620747}{51452144190} a^{11} + \frac{392318503957}{5968448726040} a^{10} + \frac{27203434411}{497370727170} a^{9} + \frac{592706603729}{11936897452080} a^{8} - \frac{469768569439}{2984224363020} a^{7} - \frac{533658791599}{5968448726040} a^{6} + \frac{40683957899}{248685363585} a^{5} - \frac{97194415577}{3978965817360} a^{4} - \frac{678284639}{596844872604} a^{3} - \frac{703642156213}{1492112181510} a^{2} - \frac{336475012081}{1492112181510} a + \frac{1121295906799}{2984224363020}$, $\frac{1}{655965996005649624453912253875549840} a^{17} - \frac{349896441926246800549}{40997874750353101528369515867221865} a^{16} - \frac{656982699905464240255543}{13665958250117700509456505289073955} a^{15} - \frac{1174710265949964322225667960610769}{163991499001412406113478063468887460} a^{14} + \frac{2354655887914433166869174545372343}{327982998002824812226956126937774920} a^{13} - \frac{65696711522651787262982332965503}{9110638833411800339637670192715970} a^{12} + \frac{32721197144402755006592559647706881}{327982998002824812226956126937774920} a^{11} + \frac{352262806326207129783777505600180}{8199574950070620305673903173444373} a^{10} + \frac{16925336225814151697119399440436373}{655965996005649624453912253875549840} a^{9} + \frac{2121012149320810128960791249371001}{32798299800282481222695612693777492} a^{8} + \frac{1605305466726305931912971321616799}{3769919517273848416401794562503160} a^{7} + \frac{50875558436873105767872120250922197}{163991499001412406113478063468887460} a^{6} - \frac{70481264573968313264055191820699013}{218655332001883208151304084625183280} a^{5} - \frac{15471322795070548224940044874155589}{163991499001412406113478063468887460} a^{4} + \frac{24666716667973217611553958674189867}{54663833000470802037826021156295820} a^{3} + \frac{20076246793171459484620578984752611}{81995749500706203056739031734443730} a^{2} + \frac{33353892931991470498831713481003937}{163991499001412406113478063468887460} a - \frac{3987426969548855837049847590892642}{8199574950070620305673903173444373}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{36}\times C_{468}$, which has order $134784$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.0.947980260864.5, 6.0.394827264.1, 6.0.33191424.1, 6.0.947980260864.4, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |