Normalized defining polynomial
\( x^{18} - 3 x^{17} - 43 x^{16} + 29 x^{15} + 1049 x^{14} + 1445 x^{13} - 10513 x^{12} - 31897 x^{11} + 39670 x^{10} + 406326 x^{9} + 1397556 x^{8} + 3675820 x^{7} + 6943544 x^{6} + 7108056 x^{5} + 3205568 x^{4} + 6357024 x^{3} + 30682880 x^{2} + 46538240 x + 30224384 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-85141600462656403601383898181048991744=-\,2^{18}\cdot 7^{12}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{32} a^{7} - \frac{3}{32} a^{6} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{32} a^{8} - \frac{3}{32} a^{6} - \frac{3}{16} a^{5} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{13} + \frac{1}{128} a^{11} + \frac{1}{64} a^{10} - \frac{1}{128} a^{9} + \frac{1}{32} a^{8} - \frac{1}{128} a^{7} + \frac{5}{64} a^{6} - \frac{1}{32} a^{5} - \frac{3}{16} a^{4} + \frac{1}{32} a^{3} - \frac{7}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} + \frac{1}{128} a^{12} - \frac{1}{64} a^{11} + \frac{3}{128} a^{10} - \frac{1}{32} a^{9} - \frac{1}{128} a^{8} + \frac{7}{64} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{7}{32} a^{4} + \frac{7}{16} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{15} - \frac{1}{256} a^{14} - \frac{1}{256} a^{13} + \frac{1}{256} a^{12} + \frac{3}{256} a^{11} - \frac{7}{256} a^{10} + \frac{13}{256} a^{9} + \frac{3}{256} a^{8} - \frac{5}{64} a^{7} - \frac{3}{64} a^{5} - \frac{3}{64} a^{4} + \frac{5}{16} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{16} - \frac{1}{512} a^{15} - \frac{1}{512} a^{14} - \frac{1}{512} a^{13} - \frac{5}{512} a^{12} + \frac{7}{512} a^{11} - \frac{15}{512} a^{10} - \frac{11}{512} a^{9} - \frac{5}{128} a^{8} - \frac{23}{256} a^{7} + \frac{7}{64} a^{6} + \frac{27}{128} a^{5} + \frac{1}{16} a^{4} + \frac{17}{64} a^{3} - \frac{3}{32} a^{2} - \frac{3}{8} a$, $\frac{1}{579358617633327965685147397716671672114476033024} a^{17} - \frac{270071981491486493179134915545306367137392177}{579358617633327965685147397716671672114476033024} a^{16} + \frac{1042433983915008386346632742349182943895385123}{579358617633327965685147397716671672114476033024} a^{15} + \frac{48584457395079430322049703004915877316750443}{579358617633327965685147397716671672114476033024} a^{14} + \frac{533649966627309969458073246539220186275199895}{579358617633327965685147397716671672114476033024} a^{13} - \frac{4073977344722323186264543086361480293690458981}{579358617633327965685147397716671672114476033024} a^{12} + \frac{6666532048848390622513612362739664606543509149}{579358617633327965685147397716671672114476033024} a^{11} - \frac{6569384198353657599604277505596187312544447895}{579358617633327965685147397716671672114476033024} a^{10} - \frac{163922506264543080489389337693967579865209125}{4526239200260374731915214044661497438394344008} a^{9} + \frac{864772318231293228523761198866815422127470335}{289679308816663982842573698858335836057238016512} a^{8} - \frac{8015400716351116310668610048785396706798139435}{72419827204165995710643424714583959014309504128} a^{7} + \frac{13463291151939958293751955636578498661975011675}{144839654408331991421286849429167918028619008256} a^{6} + \frac{358831751178556639218808009831252597709252135}{36209913602082997855321712357291979507154752064} a^{5} - \frac{7272411866006808083611342797783812410963997381}{72419827204165995710643424714583959014309504128} a^{4} - \frac{9755824722808291581305117108485687069725765231}{36209913602082997855321712357291979507154752064} a^{3} - \frac{617611302382253042309412417658529143247847639}{4526239200260374731915214044661497438394344008} a^{2} - \frac{860639738126686142473929075181574862401668797}{2263119600130187365957607022330748719197172004} a + \frac{4483209575445904108041797460764158928278798}{12037870213458443435944718203886961272325383}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{38934}$, which has order $1051218$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 845253452.5841897 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.961.1, 3.3.376712.1, 6.0.28629151.1, 6.0.4399269859264.1, 9.9.53459927329776128.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 31 | Data not computed | ||||||