Normalized defining polynomial
\( x^{18} - 8 x^{17} + 29 x^{16} - 64 x^{15} + 165 x^{14} - 536 x^{13} + 1361 x^{12} - 2252 x^{11} + 2173 x^{10} - 1680 x^{9} + 3521 x^{8} - 6252 x^{7} + 4993 x^{6} - 2244 x^{5} - 284 x^{4} + 5080 x^{3} - 5440 x^{2} + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-85087260843709466724609375=-\,3^{9}\cdot 5^{9}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{308} a^{14} + \frac{37}{154} a^{13} + \frac{69}{308} a^{12} + \frac{3}{77} a^{11} + \frac{9}{44} a^{10} + \frac{16}{77} a^{9} - \frac{65}{308} a^{8} + \frac{3}{14} a^{7} - \frac{13}{44} a^{6} + \frac{75}{154} a^{5} + \frac{79}{308} a^{4} - \frac{3}{77} a^{3} + \frac{83}{308} a^{2} - \frac{5}{77} a + \frac{12}{77}$, $\frac{1}{616} a^{15} + \frac{137}{616} a^{13} - \frac{3}{154} a^{12} - \frac{5}{56} a^{11} - \frac{3}{14} a^{10} - \frac{27}{616} a^{9} - \frac{13}{154} a^{8} - \frac{47}{616} a^{7} - \frac{25}{77} a^{6} - \frac{87}{616} a^{5} + \frac{37}{154} a^{4} + \frac{201}{616} a^{3} - \frac{39}{154} a^{2} + \frac{37}{77} a + \frac{18}{77}$, $\frac{1}{4928} a^{16} - \frac{3}{4928} a^{14} - \frac{103}{616} a^{13} - \frac{475}{4928} a^{12} - \frac{17}{308} a^{11} + \frac{1009}{4928} a^{10} - \frac{97}{1232} a^{9} - \frac{73}{448} a^{8} - \frac{25}{616} a^{7} - \frac{1823}{4928} a^{6} + \frac{23}{1232} a^{5} + \frac{1153}{4928} a^{4} + \frac{73}{1232} a^{3} - \frac{367}{1232} a^{2} - \frac{17}{616} a - \frac{4}{11}$, $\frac{1}{1680174733812672413681795584} a^{17} - \frac{690458605538249939345}{30003120246654864530032064} a^{16} + \frac{1150806273229639086549661}{1680174733812672413681795584} a^{15} - \frac{29363631571574935874611}{105010920863292025855112224} a^{14} - \frac{3716568696580495359637083}{1680174733812672413681795584} a^{13} + \frac{45633532288574934671007311}{210021841726584051710224448} a^{12} - \frac{47188937759235666267831599}{1680174733812672413681795584} a^{11} + \frac{54847337899615930577313441}{420043683453168103420448896} a^{10} + \frac{305320095424235695980242365}{1680174733812672413681795584} a^{9} - \frac{747892849129438796052365}{13126365107911503231889028} a^{8} + \frac{93460875863276902678977985}{1680174733812672413681795584} a^{7} - \frac{15968068885776513657446389}{38185789404833463947313536} a^{6} - \frac{6301205670952442018990267}{21820451088476265112750592} a^{5} - \frac{155766679475720319213810973}{420043683453168103420448896} a^{4} + \frac{14197415376242500752674587}{38185789404833463947313536} a^{3} - \frac{5382138158397482755334109}{210021841726584051710224448} a^{2} + \frac{5636468685320357124968661}{26252730215823006463778056} a + \frac{847356116974511742031347}{3281591276977875807972257}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 221984.4857 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.5415.1 x3, 3.3.361.1, 6.0.439833375.3, 6.0.1218375.1 x2, 6.0.439833375.1, 9.3.158779848375.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1218375.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |