Normalized defining polynomial
\( x^{18} - 2 x^{17} - 2 x^{16} + 10 x^{15} + 24 x^{14} - 43 x^{13} - 69 x^{12} + 156 x^{11} + 130 x^{10} - 680 x^{9} + 805 x^{8} - 450 x^{7} + 175 x^{6} - 6 x^{5} - 60 x^{4} - 3 x^{3} + 3 x^{2} + 9 x + 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-847288609443000000000000=-\,2^{12}\cdot 3^{25}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{218458256091775424489} a^{17} + \frac{35437208218052967402}{218458256091775424489} a^{16} - \frac{68104202272546478409}{218458256091775424489} a^{15} - \frac{106706387629582875899}{218458256091775424489} a^{14} - \frac{219980036848180923}{506863703229177319} a^{13} + \frac{11935570018206651480}{218458256091775424489} a^{12} + \frac{53470385960747108474}{218458256091775424489} a^{11} - \frac{11265827534764990455}{218458256091775424489} a^{10} + \frac{22764094189980431631}{218458256091775424489} a^{9} - \frac{37126219967119587224}{218458256091775424489} a^{8} - \frac{13197265672834334750}{218458256091775424489} a^{7} + \frac{80895362089155170585}{218458256091775424489} a^{6} - \frac{76335472171288650967}{218458256091775424489} a^{5} - \frac{52953520179728259006}{218458256091775424489} a^{4} - \frac{33183095781611480056}{218458256091775424489} a^{3} + \frac{8493542578492448786}{218458256091775424489} a^{2} - \frac{27512226492239381864}{218458256091775424489} a + \frac{101917389434281753693}{218458256091775424489}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4499672331136}{9898264731071} a^{17} + \frac{6966026961587}{9898264731071} a^{16} + \frac{10581090326983}{9898264731071} a^{15} - \frac{38157782026021}{9898264731071} a^{14} - \frac{280825496280}{22965811441} a^{13} + \frac{126554046684003}{9898264731071} a^{12} + \frac{322436177093746}{9898264731071} a^{11} - \frac{522777760434579}{9898264731071} a^{10} - \frac{699250409001240}{9898264731071} a^{9} + \frac{2592547297272655}{9898264731071} a^{8} - \frac{2734724375293126}{9898264731071} a^{7} + \frac{1621095042901538}{9898264731071} a^{6} - \frac{792661021770507}{9898264731071} a^{5} + \frac{59591092618152}{9898264731071} a^{4} + \frac{68583162072937}{9898264731071} a^{3} + \frac{58461386493279}{9898264731071} a^{2} + \frac{22685023915530}{9898264731071} a + \frac{1235379096877}{9898264731071} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160070.62698640698 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 6.0.270000.1, 9.3.177147000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.11.10 | $x^{6} + 18 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ |
| 3.6.11.10 | $x^{6} + 18 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |