Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 387 x^{14} - 693 x^{13} + 864 x^{12} - 621 x^{11} + 99 x^{10} - 22 x^{9} + 1155 x^{8} - 3207 x^{7} + 3789 x^{6} - 1740 x^{5} - 276 x^{4} + 528 x^{3} + 48 x^{2} - 192 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-847288609443000000000000=-\,2^{12}\cdot 3^{25}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{12} + \frac{3}{16} a^{9} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{3}{16} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{13} - \frac{1}{32} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{5}{32} a^{9} - \frac{11}{64} a^{8} + \frac{11}{64} a^{7} + \frac{1}{8} a^{6} - \frac{9}{64} a^{5} - \frac{11}{64} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{64} a^{15} + \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{3}{64} a^{10} - \frac{1}{64} a^{9} - \frac{5}{32} a^{8} - \frac{15}{64} a^{7} + \frac{7}{64} a^{6} - \frac{9}{32} a^{5} + \frac{7}{64} a^{4} - \frac{3}{8} a^{2} - \frac{1}{4}$, $\frac{1}{22449664} a^{16} - \frac{1}{2806208} a^{15} + \frac{133095}{22449664} a^{14} + \frac{471579}{22449664} a^{13} - \frac{38053}{5612416} a^{12} - \frac{1008307}{22449664} a^{11} - \frac{225499}{22449664} a^{10} - \frac{770327}{11224832} a^{9} - \frac{607457}{22449664} a^{8} + \frac{3562509}{22449664} a^{7} - \frac{2329721}{11224832} a^{6} - \frac{4786175}{22449664} a^{5} + \frac{3672677}{11224832} a^{4} + \frac{57837}{350776} a^{3} + \frac{183433}{701552} a^{2} + \frac{195039}{1403104} a - \frac{194609}{701552}$, $\frac{1}{23863992832} a^{17} + \frac{523}{23863992832} a^{16} + \frac{38012655}{23863992832} a^{15} + \frac{19811031}{2982999104} a^{14} - \frac{695085083}{23863992832} a^{13} + \frac{509575457}{23863992832} a^{12} + \frac{38584969}{5965998208} a^{11} - \frac{722159911}{23863992832} a^{10} - \frac{4661095035}{23863992832} a^{9} + \frac{2409058681}{11931996416} a^{8} - \frac{3903928147}{23863992832} a^{7} - \frac{5004537077}{23863992832} a^{6} + \frac{3091982693}{23863992832} a^{5} - \frac{2082407893}{11931996416} a^{4} + \frac{142985713}{372874888} a^{3} + \frac{592079317}{1491499552} a^{2} + \frac{12676283}{1491499552} a - \frac{235404543}{745749776}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1086767}{73202432} a^{17} + \frac{18475039}{146404864} a^{16} - \frac{44473109}{73202432} a^{15} + \frac{297595855}{146404864} a^{14} - \frac{706335523}{146404864} a^{13} + \frac{599231399}{73202432} a^{12} - \frac{1382797315}{146404864} a^{11} + \frac{829502047}{146404864} a^{10} + \frac{1846651}{36601216} a^{9} + \frac{167819195}{146404864} a^{8} - \frac{2451378833}{146404864} a^{7} + \frac{1454539301}{36601216} a^{6} - \frac{5715796301}{146404864} a^{5} + \frac{852975379}{73202432} a^{4} + \frac{11971765}{2287576} a^{3} - \frac{8405983}{2287576} a^{2} - \frac{26901059}{9150304} a + \frac{10198281}{4575152} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 460641.7441064912 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.675.1 x3, 3.3.2700.1, 6.0.21870000.1, 6.0.1366875.1, 9.3.531441000000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |