Normalized defining polynomial
\( x^{18} + 40 x^{16} + 606 x^{14} + 4498 x^{12} + 17745 x^{10} + 37370 x^{8} + 40081 x^{6} + 20600 x^{4} + 4112 x^{2} + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-84535014172552012147112280064=-\,2^{18}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(364=2^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{364}(1,·)$, $\chi_{364}(107,·)$, $\chi_{364}(261,·)$, $\chi_{364}(263,·)$, $\chi_{364}(9,·)$, $\chi_{364}(79,·)$, $\chi_{364}(81,·)$, $\chi_{364}(211,·)$, $\chi_{364}(347,·)$, $\chi_{364}(29,·)$, $\chi_{364}(289,·)$, $\chi_{364}(165,·)$, $\chi_{364}(295,·)$, $\chi_{364}(235,·)$, $\chi_{364}(113,·)$, $\chi_{364}(53,·)$, $\chi_{364}(183,·)$, $\chi_{364}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{5} - \frac{1}{12} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{12} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{7} - \frac{1}{12} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{12} a^{12} + \frac{5}{12} a^{6} + \frac{1}{12} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{7} + \frac{1}{12} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{14} - \frac{5}{12} a^{6} - \frac{1}{2} a^{4} - \frac{1}{12} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{5}{24} a^{7} + \frac{1}{4} a^{5} - \frac{1}{24} a^{3} + \frac{1}{6} a$, $\frac{1}{729036144} a^{16} - \frac{654617}{60753012} a^{14} + \frac{231569}{121506024} a^{12} - \frac{1500241}{364518072} a^{10} + \frac{15288161}{729036144} a^{8} + \frac{12708849}{40502008} a^{6} + \frac{261642421}{729036144} a^{4} + \frac{36107299}{182259036} a^{2} + \frac{14601484}{45564759}$, $\frac{1}{1458072288} a^{17} - \frac{654617}{121506024} a^{15} + \frac{231569}{243012048} a^{13} + \frac{28876265}{729036144} a^{11} + \frac{15288161}{1458072288} a^{9} + \frac{2583347}{81004016} a^{7} - \frac{528146735}{1458072288} a^{5} + \frac{5730793}{364518072} a^{3} - \frac{30963275}{91129518} a$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2275}{335652} a^{17} + \frac{178643}{671304} a^{15} + \frac{656345}{167826} a^{13} + \frac{9260633}{335652} a^{11} + \frac{16725835}{167826} a^{9} + \frac{39655853}{223768} a^{7} + \frac{10840237}{83913} a^{5} + \frac{13272287}{671304} a^{3} - \frac{1238579}{167826} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{7})^+\), 3.3.8281.1, 3.3.169.1, 3.3.8281.2, 6.0.153664.1, 6.0.4388797504.2, 6.0.1827904.1, 6.0.4388797504.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |