Normalized defining polynomial
\( x^{18} - 9 x^{17} + 60 x^{16} - 262 x^{15} + 1929 x^{14} - 10053 x^{13} + 71441 x^{12} - 309315 x^{11} + 1767420 x^{10} - 6349626 x^{9} + 33272703 x^{8} - 106851099 x^{7} + 497306862 x^{6} - 1307684628 x^{5} + 4889287872 x^{4} - 9029732096 x^{3} + 25896306432 x^{2} - 25618016256 x + 54730227712 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83965375312753658928066380894847299471799=-\,3^{21}\cdot 13^{9}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $187.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{6} + \frac{5}{12} a^{3} + \frac{1}{3}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{24} a^{4} - \frac{11}{24} a^{3} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{48} a^{11} + \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} - \frac{1}{6} a^{6} - \frac{1}{48} a^{5} - \frac{1}{48} a^{3} - \frac{7}{24} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{96} a^{12} - \frac{1}{96} a^{10} - \frac{1}{24} a^{9} + \frac{1}{12} a^{7} - \frac{3}{32} a^{6} - \frac{1}{4} a^{5} - \frac{23}{96} a^{4} + \frac{1}{8} a^{3} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{192} a^{13} - \frac{1}{192} a^{12} + \frac{1}{192} a^{11} + \frac{1}{192} a^{10} + \frac{1}{96} a^{9} + \frac{1}{48} a^{8} - \frac{25}{192} a^{7} + \frac{1}{192} a^{6} + \frac{47}{192} a^{5} + \frac{31}{192} a^{4} + \frac{43}{96} a^{3} + \frac{7}{48} a^{2} - \frac{1}{4} a$, $\frac{1}{384} a^{14} - \frac{1}{384} a^{13} + \frac{1}{384} a^{12} + \frac{1}{384} a^{11} - \frac{1}{64} a^{10} - \frac{1}{96} a^{9} + \frac{23}{384} a^{8} - \frac{31}{384} a^{7} + \frac{5}{128} a^{6} + \frac{31}{384} a^{5} + \frac{47}{192} a^{4} + \frac{11}{32} a^{3} + \frac{1}{4} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{2304} a^{15} + \frac{1}{1152} a^{14} + \frac{1}{1152} a^{13} - \frac{1}{288} a^{12} - \frac{7}{2304} a^{11} + \frac{1}{384} a^{10} - \frac{23}{768} a^{9} + \frac{83}{1152} a^{8} - \frac{233}{1152} a^{7} - \frac{5}{288} a^{6} - \frac{385}{2304} a^{5} - \frac{223}{1152} a^{4} - \frac{265}{576} a^{3} + \frac{1}{12} a^{2} + \frac{13}{36} a + \frac{4}{9}$, $\frac{1}{17747712} a^{16} + \frac{79}{5915904} a^{15} + \frac{3317}{8873856} a^{14} + \frac{123}{123248} a^{13} - \frac{13979}{5915904} a^{12} - \frac{154705}{17747712} a^{11} - \frac{106681}{5915904} a^{10} - \frac{597377}{17747712} a^{9} - \frac{29769}{985984} a^{8} - \frac{195251}{1109232} a^{7} - \frac{4152359}{17747712} a^{6} - \frac{952469}{5915904} a^{5} - \frac{414313}{2957952} a^{4} - \frac{372583}{4436928} a^{3} + \frac{505153}{1109232} a^{2} + \frac{57601}{138654} a + \frac{22522}{69327}$, $\frac{1}{195862774641797244759491790204204512556944228598635685888} a^{17} + \frac{347270594701931855042497788534210764456335352927}{195862774641797244759491790204204512556944228598635685888} a^{16} - \frac{2365684012216122734246705404773746898635456573774345}{48965693660449311189872947551051128139236057149658921472} a^{15} - \frac{62136395424485639586513666601394367560122296309116435}{97931387320898622379745895102102256278472114299317842944} a^{14} - \frac{152770758107336112898065528892548986905039824093518701}{65287591547265748253163930068068170852314742866211895296} a^{13} - \frac{8883023330236895801882448088395474076510302632288483}{4167293077485047760840250855408606650147749544651823104} a^{12} - \frac{1703164032480228925258955142487072025618574958204751999}{195862774641797244759491790204204512556944228598635685888} a^{11} + \frac{1743324068919654485345284580337005447618292577824845941}{195862774641797244759491790204204512556944228598635685888} a^{10} + \frac{29347529682021522632192461279542427593083759373000647}{48965693660449311189872947551051128139236057149658921472} a^{9} - \frac{7000421728562168529101815776969908855927550088538596429}{97931387320898622379745895102102256278472114299317842944} a^{8} - \frac{10068152363785261630441501308465991220733772926788624827}{65287591547265748253163930068068170852314742866211895296} a^{7} - \frac{44031052777519331023591778883731215131840394644695154163}{195862774641797244759491790204204512556944228598635685888} a^{6} - \frac{1011091249368301498153218985166652059377895790286073753}{10881265257877624708860655011344695142052457144368649216} a^{5} - \frac{7607632191192497634125707661793393910402516988057715421}{48965693660449311189872947551051128139236057149658921472} a^{4} + \frac{56117319590584968744631329209571794710156232812205759}{3060355853778081949367059221940695508702253571853682592} a^{3} + \frac{866249083690658422050930502207698623043620206328689}{191272240861130121835441201371293469293890848240855162} a^{2} + \frac{47301330329607732834120535891296510948260707448753027}{765088963444520487341764805485173877175563392963420648} a - \frac{8206054054562032604330121494908582933132785159266459}{95636120430565060917720600685646734646945424120427581}$
Class group and class number
$C_{20}\times C_{1491440}$, which has order $29828800$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67295442.84873295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.961.1, 3.3.837.1, 6.0.54782342199.1, 6.0.4617450279.2, 9.9.541530783546813.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.12.10.1 | $x^{12} + 69161 x^{6} + 2869530624$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |