Normalized defining polynomial
\( x^{18} - 3 x^{17} + 3 x^{16} + 9 x^{14} - 45 x^{13} + 102 x^{12} - 105 x^{11} + 123 x^{10} - 110 x^{9} + 147 x^{8} - 183 x^{7} + 207 x^{6} - 198 x^{5} + 144 x^{4} - 120 x^{3} + 96 x^{2} - 96 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83769291871618924818432=-\,2^{12}\cdot 3^{25}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{9} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{18} a^{2} + \frac{5}{18} a + \frac{1}{9}$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{11} + \frac{1}{18} a^{10} - \frac{5}{36} a^{9} + \frac{5}{12} a^{8} - \frac{1}{3} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{5}{36} a^{3} - \frac{11}{36} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{11} + \frac{1}{36} a^{10} + \frac{1}{18} a^{9} - \frac{5}{12} a^{8} + \frac{1}{4} a^{7} - \frac{1}{3} a^{6} + \frac{5}{12} a^{5} - \frac{1}{36} a^{4} - \frac{1}{2} a^{3} - \frac{5}{36} a^{2} - \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{36} a^{14} - \frac{1}{18} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{5}{18} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{7}{18} a + \frac{2}{9}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{14} - \frac{1}{72} a^{13} + \frac{1}{72} a^{11} - \frac{5}{72} a^{10} - \frac{5}{36} a^{9} - \frac{11}{24} a^{8} + \frac{1}{24} a^{7} + \frac{13}{36} a^{6} + \frac{7}{72} a^{5} + \frac{25}{72} a^{4} - \frac{11}{24} a^{3} - \frac{7}{18} a^{2} - \frac{1}{18} a + \frac{2}{9}$, $\frac{1}{18288} a^{16} + \frac{1}{18288} a^{15} - \frac{1}{2032} a^{14} - \frac{13}{4572} a^{13} - \frac{55}{18288} a^{12} - \frac{449}{18288} a^{11} + \frac{101}{9144} a^{10} - \frac{2273}{18288} a^{9} + \frac{1015}{2032} a^{8} - \frac{2717}{9144} a^{7} + \frac{9035}{18288} a^{6} + \frac{1343}{6096} a^{5} + \frac{8923}{18288} a^{4} - \frac{2293}{9144} a^{3} - \frac{472}{1143} a^{2} + \frac{341}{1143} a + \frac{32}{1143}$, $\frac{1}{621755424} a^{17} + \frac{539}{69083936} a^{16} - \frac{3107675}{621755424} a^{15} + \frac{401059}{310877712} a^{14} + \frac{5605493}{621755424} a^{13} - \frac{5656063}{621755424} a^{12} + \frac{119305}{17270984} a^{11} + \frac{18074167}{621755424} a^{10} + \frac{11433911}{207251808} a^{9} - \frac{1254101}{77719428} a^{8} - \frac{4749959}{207251808} a^{7} + \frac{24370427}{621755424} a^{6} - \frac{129276647}{621755424} a^{5} - \frac{26145361}{77719428} a^{4} + \frac{2118883}{38859714} a^{3} + \frac{426889}{8635492} a^{2} - \frac{11450359}{38859714} a + \frac{332614}{6476619}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{317}{305982} a^{17} - \frac{22139}{2447856} a^{16} + \frac{29579}{2447856} a^{15} - \frac{14087}{2447856} a^{14} + \frac{24251}{1223928} a^{13} - \frac{308551}{2447856} a^{12} + \frac{656989}{2447856} a^{11} - \frac{259007}{611964} a^{10} + \frac{1045139}{2447856} a^{9} - \frac{2786671}{2447856} a^{8} + \frac{171247}{305982} a^{7} - \frac{2224289}{2447856} a^{6} + \frac{282023}{2447856} a^{5} - \frac{2276851}{2447856} a^{4} + \frac{396553}{611964} a^{3} - \frac{155285}{305982} a^{2} + \frac{91346}{152991} a + \frac{78346}{152991} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23410.949000205437 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 3.1.459.1, 6.0.632043.1, 6.0.34992.1, 9.1.167102056512.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |