Normalized defining polynomial
\( x^{18} - 3 x^{17} + 48 x^{16} - 4 x^{15} + 684 x^{14} + 2712 x^{13} + 4202 x^{12} + 25530 x^{11} + 50940 x^{10} - 150228 x^{9} + 260676 x^{8} + 1689372 x^{7} + 4385648 x^{6} + 5730762 x^{5} + 11848893 x^{4} + 12429935 x^{3} + 18187044 x^{2} + 4539660 x + 22373704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8374216152942811568456908683240234375=-\,3^{24}\cdot 5^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(855=3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{855}(1,·)$, $\chi_{855}(259,·)$, $\chi_{855}(391,·)$, $\chi_{855}(844,·)$, $\chi_{855}(274,·)$, $\chi_{855}(406,·)$, $\chi_{855}(664,·)$, $\chi_{855}(94,·)$, $\chi_{855}(544,·)$, $\chi_{855}(571,·)$, $\chi_{855}(676,·)$, $\chi_{855}(106,·)$, $\chi_{855}(559,·)$, $\chi_{855}(691,·)$, $\chi_{855}(286,·)$, $\chi_{855}(121,·)$, $\chi_{855}(379,·)$, $\chi_{855}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{22} a^{12} + \frac{5}{22} a^{11} + \frac{3}{22} a^{10} + \frac{2}{11} a^{9} + \frac{1}{22} a^{8} - \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{5}{22} a^{5} - \frac{1}{22} a^{4} - \frac{9}{22} a^{3} - \frac{1}{11} a^{2} - \frac{7}{22} a + \frac{2}{11}$, $\frac{1}{22} a^{13} + \frac{3}{22} a^{9} - \frac{1}{11} a^{7} - \frac{1}{2} a^{6} - \frac{2}{11} a^{5} - \frac{2}{11} a^{4} + \frac{5}{11} a^{3} + \frac{3}{22} a^{2} + \frac{3}{11} a + \frac{1}{11}$, $\frac{1}{22} a^{14} + \frac{3}{22} a^{10} - \frac{1}{11} a^{8} - \frac{1}{2} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} + \frac{5}{11} a^{4} + \frac{3}{22} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{4202} a^{15} - \frac{7}{2101} a^{14} - \frac{45}{2101} a^{13} - \frac{46}{2101} a^{12} - \frac{465}{2101} a^{11} - \frac{511}{2101} a^{10} - \frac{387}{4202} a^{9} - \frac{76}{2101} a^{8} - \frac{835}{2101} a^{7} - \frac{262}{2101} a^{6} - \frac{1029}{2101} a^{5} - \frac{651}{2101} a^{4} - \frac{626}{2101} a^{3} + \frac{107}{4202} a^{2} + \frac{1209}{4202} a - \frac{384}{2101}$, $\frac{1}{310948} a^{16} - \frac{7}{155474} a^{15} - \frac{29}{2101} a^{14} - \frac{141}{7067} a^{13} - \frac{1611}{155474} a^{12} - \frac{10474}{77737} a^{11} - \frac{8644}{77737} a^{10} - \frac{17419}{77737} a^{9} - \frac{14587}{155474} a^{8} + \frac{14767}{77737} a^{7} + \frac{12569}{77737} a^{6} - \frac{6763}{155474} a^{5} + \frac{31584}{77737} a^{4} - \frac{17975}{77737} a^{3} - \frac{58765}{310948} a^{2} - \frac{31}{2101} a + \frac{137}{407}$, $\frac{1}{8890304428408026700925592385731978984044339917315172252} a^{17} - \frac{9963880545437507928374178772349664090574567570065}{8890304428408026700925592385731978984044339917315172252} a^{16} + \frac{150369696624612146499599748993314179313628781930749}{4445152214204013350462796192865989492022169958657586126} a^{15} - \frac{1150704791103495597557296047259158242306132064867514}{202052373372909697748308917857544976910098634484435733} a^{14} - \frac{4814558765455102333136147434851390272246916322226468}{2222576107102006675231398096432994746011084979328793063} a^{13} + \frac{31755765768786232280150598049129409919069737251101773}{2222576107102006675231398096432994746011084979328793063} a^{12} - \frac{228612095242185398503573616803490373153347000659875791}{4445152214204013350462796192865989492022169958657586126} a^{11} - \frac{799994591754624788703721396216891569048078818354158163}{4445152214204013350462796192865989492022169958657586126} a^{10} + \frac{539099792653937505982044240658849934283033328276081693}{4445152214204013350462796192865989492022169958657586126} a^{9} + \frac{380764657464368112046582010220198140490781700144660187}{4445152214204013350462796192865989492022169958657586126} a^{8} - \frac{322198362639455904921142245888645676882589430657981449}{2222576107102006675231398096432994746011084979328793063} a^{7} + \frac{50843908460562364172127057527917970840214269007046678}{202052373372909697748308917857544976910098634484435733} a^{6} + \frac{542914732614175747129985856524302510356360227934000500}{2222576107102006675231398096432994746011084979328793063} a^{5} - \frac{390691029341795138378422970175064155268903260516984623}{4445152214204013350462796192865989492022169958657586126} a^{4} - \frac{4165850995054543043390576761043623554574007364020063767}{8890304428408026700925592385731978984044339917315172252} a^{3} + \frac{3087448176188399495975474603025647367190901272054517703}{8890304428408026700925592385731978984044339917315172252} a^{2} - \frac{37081252361719798721490892687949536260204729931075090}{202052373372909697748308917857544976910098634484435733} a + \frac{41515376949681140875360500294340787527087491270645308}{2222576107102006675231398096432994746011084979328793063}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{936}$, which has order $134784$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.082400847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), \(\Q(\zeta_{9})^+\), 3.3.29241.1, 3.3.29241.2, 3.3.361.1, 6.0.5625237375.5, 6.0.2030710692375.4, 6.0.2030710692375.5, 6.0.309512375.1, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |