Normalized defining polynomial
\( x^{18} + 110960891811846912 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83221605475299746491196195815324545938996983211283813572975383538761728=-\,2^{16}\cdot 3^{53}\cdot 11^{16}\cdot 103^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8709.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{206} a^{3}$, $\frac{1}{206} a^{4}$, $\frac{1}{412} a^{5}$, $\frac{1}{42436} a^{6}$, $\frac{1}{84872} a^{7}$, $\frac{1}{84872} a^{8}$, $\frac{1}{384639904} a^{9} - \frac{1}{2}$, $\frac{1}{384639904} a^{10} - \frac{1}{2} a$, $\frac{1}{384639904} a^{11} - \frac{1}{2} a^{2}$, $\frac{1}{79235820224} a^{12} - \frac{1}{412} a^{3}$, $\frac{1}{79235820224} a^{13} - \frac{1}{412} a^{4}$, $\frac{1}{158471640448} a^{14} - \frac{1}{824} a^{5}$, $\frac{1}{16322578966144} a^{15} - \frac{1}{84872} a^{6}$, $\frac{1}{32645157932288} a^{16} - \frac{1}{169744} a^{7}$, $\frac{1}{32645157932288} a^{17} - \frac{1}{169744} a^{8}$
Class group and class number
Not computed
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{384639904} a^{9} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $D_9:C_3$ |
| Character table for $D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.117612.3 x3, 6.0.41497747632.1, 9.1.166554901334164431819189951202334976.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $103$ | 103.3.2.1 | $x^{3} - 103$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 103.3.2.3 | $x^{3} - 412$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 103.3.2.2 | $x^{3} + 206$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 103.3.2.3 | $x^{3} - 412$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 103.3.2.1 | $x^{3} - 103$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 103.3.2.2 | $x^{3} + 206$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |