Normalized defining polynomial
\( x^{18} - 3 x^{17} + 18 x^{16} - 48 x^{15} + 83 x^{14} - 203 x^{13} + 90 x^{12} + 47 x^{11} + 131 x^{10} + 918 x^{9} + 3164 x^{8} + 2377 x^{7} - 796 x^{6} + 1065 x^{5} + 9952 x^{4} - 8374 x^{3} - 16172 x^{2} + 7750 x + 19127 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-82978860458831265178139791=-\,11^{12}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{549} a^{15} - \frac{52}{549} a^{13} - \frac{56}{549} a^{12} + \frac{26}{183} a^{11} - \frac{85}{549} a^{10} - \frac{5}{549} a^{9} - \frac{14}{183} a^{8} + \frac{4}{61} a^{7} - \frac{251}{549} a^{6} + \frac{80}{549} a^{5} - \frac{35}{183} a^{4} - \frac{2}{9} a^{3} - \frac{58}{549} a^{2} + \frac{11}{183} a - \frac{128}{549}$, $\frac{1}{18568827} a^{16} + \frac{326}{18568827} a^{15} + \frac{873529}{18568827} a^{14} - \frac{73619}{2063203} a^{13} + \frac{33512}{304407} a^{12} - \frac{1572857}{18568827} a^{11} + \frac{49220}{6189609} a^{10} + \frac{2891924}{18568827} a^{9} - \frac{1218223}{18568827} a^{8} + \frac{1028111}{18568827} a^{7} - \frac{312036}{2063203} a^{6} - \frac{7111757}{18568827} a^{5} - \frac{358201}{18568827} a^{4} - \frac{2442073}{6189609} a^{3} + \frac{8427673}{18568827} a^{2} + \frac{6328034}{18568827} a - \frac{8316866}{18568827}$, $\frac{1}{65173579766608936999245911793} a^{17} + \frac{1201305395844692490818}{65173579766608936999245911793} a^{16} + \frac{4590819428179235194661095}{65173579766608936999245911793} a^{15} + \frac{1965351051810763660270778444}{65173579766608936999245911793} a^{14} - \frac{6198951787891309633071160}{21724526588869645666415303931} a^{13} - \frac{3518709889458680723742386066}{65173579766608936999245911793} a^{12} - \frac{1814579882022335400500459200}{65173579766608936999245911793} a^{11} - \frac{1239460169409757879016376056}{21724526588869645666415303931} a^{10} + \frac{5527800930390248417966782421}{65173579766608936999245911793} a^{9} - \frac{6813779945558712090694675385}{65173579766608936999245911793} a^{8} - \frac{5562840499573568103190785368}{65173579766608936999245911793} a^{7} + \frac{9795102084437570580402136}{31900920101130169847893251} a^{6} + \frac{9916163025740139523242315188}{65173579766608936999245911793} a^{5} + \frac{30798510709027891329506230810}{65173579766608936999245911793} a^{4} - \frac{1236770424608036160194726284}{21724526588869645666415303931} a^{3} + \frac{16660075553591870538448590542}{65173579766608936999245911793} a^{2} - \frac{10973560022739841494138321013}{65173579766608936999245911793} a - \frac{10107369888725610125099719909}{65173579766608936999245911793}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 605404.210476 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, 6.0.29791.1, 9.1.1636073786281.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |