Normalized defining polynomial
\( x^{18} + 213 x^{16} - 6 x^{15} + 20232 x^{14} - 372 x^{13} + 1112048 x^{12} + 2232 x^{11} + 38661657 x^{10} + 1074518 x^{9} + 878462091 x^{8} + 49747296 x^{7} + 13080744725 x^{6} + 1198422450 x^{5} + 126327354123 x^{4} + 18837567282 x^{3} + 761687723085 x^{2} + 133856748120 x + 2131852243753 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-828809655441826774321495340465219960832=-\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $145.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2772=2^{2}\cdot 3^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2772}(1,·)$, $\chi_{2772}(2377,·)$, $\chi_{2772}(439,·)$, $\chi_{2772}(1231,·)$, $\chi_{2772}(2641,·)$, $\chi_{2772}(1363,·)$, $\chi_{2772}(793,·)$, $\chi_{2772}(1627,·)$, $\chi_{2772}(925,·)$, $\chi_{2772}(529,·)$, $\chi_{2772}(2155,·)$, $\chi_{2772}(1453,·)$, $\chi_{2772}(2287,·)$, $\chi_{2772}(307,·)$, $\chi_{2772}(1717,·)$, $\chi_{2772}(2551,·)$, $\chi_{2772}(1849,·)$, $\chi_{2772}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} + \frac{5}{11} a^{4} - \frac{2}{11} a^{3} - \frac{2}{11} a^{2} - \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{7} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} - \frac{2}{11} a^{3} - \frac{5}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{22} a^{8} - \frac{1}{11} a^{5} - \frac{5}{22} a^{4} - \frac{3}{11} a^{3} - \frac{1}{2} a^{2} - \frac{4}{11} a - \frac{5}{22}$, $\frac{1}{22} a^{9} - \frac{5}{22} a^{5} + \frac{2}{11} a^{4} + \frac{7}{22} a^{3} + \frac{5}{11} a^{2} + \frac{7}{22} a + \frac{1}{11}$, $\frac{1}{22} a^{10} - \frac{1}{22} a^{6} + \frac{2}{11} a^{5} + \frac{5}{22} a^{4} + \frac{1}{11} a^{3} - \frac{1}{22} a^{2} + \frac{2}{11} a + \frac{2}{11}$, $\frac{1}{22} a^{11} - \frac{1}{22} a^{7} + \frac{5}{22} a^{5} + \frac{2}{11} a^{4} + \frac{7}{22} a^{3} - \frac{5}{11} a^{2} + \frac{1}{11} a - \frac{2}{11}$, $\frac{1}{242} a^{12} - \frac{1}{242} a^{10} - \frac{2}{121} a^{9} - \frac{1}{242} a^{8} - \frac{4}{121} a^{7} + \frac{4}{121} a^{6} + \frac{34}{121} a^{5} + \frac{50}{121} a^{4} + \frac{30}{121} a^{3} + \frac{21}{242} a^{2} - \frac{16}{121} a + \frac{39}{121}$, $\frac{1}{242} a^{13} - \frac{1}{242} a^{11} - \frac{2}{121} a^{10} - \frac{1}{242} a^{9} + \frac{3}{242} a^{8} + \frac{4}{121} a^{7} + \frac{1}{121} a^{6} + \frac{39}{121} a^{5} - \frac{83}{242} a^{4} + \frac{87}{242} a^{3} - \frac{21}{242} a^{2} + \frac{39}{121} a - \frac{1}{2}$, $\frac{1}{242} a^{14} - \frac{2}{121} a^{11} - \frac{1}{121} a^{10} - \frac{1}{242} a^{9} - \frac{2}{121} a^{8} - \frac{3}{121} a^{7} - \frac{1}{121} a^{6} + \frac{7}{242} a^{5} + \frac{2}{11} a^{4} + \frac{39}{242} a^{3} - \frac{4}{11} a^{2} - \frac{109}{242} a + \frac{45}{242}$, $\frac{1}{242} a^{15} - \frac{1}{121} a^{11} - \frac{5}{242} a^{10} + \frac{1}{121} a^{9} + \frac{1}{242} a^{8} + \frac{5}{121} a^{7} - \frac{5}{242} a^{6} - \frac{40}{121} a^{5} - \frac{39}{121} a^{4} - \frac{1}{121} a^{3} - \frac{29}{121} a^{2} + \frac{5}{242} a + \frac{15}{242}$, $\frac{1}{12173565087255366542179899412} a^{16} - \frac{4835360133235793062256512}{3043391271813841635544974853} a^{15} - \frac{3949413047222307554798210}{3043391271813841635544974853} a^{14} - \frac{1429199451267660912068150}{3043391271813841635544974853} a^{13} + \frac{3951333338631761135079536}{3043391271813841635544974853} a^{12} + \frac{96544465788154275199294609}{6086782543627683271089949706} a^{11} - \frac{48826411204908202384701235}{3043391271813841635544974853} a^{10} + \frac{125144757077675281209025441}{6086782543627683271089949706} a^{9} - \frac{250299442879896977216818095}{12173565087255366542179899412} a^{8} + \frac{152956548192061869472711611}{6086782543627683271089949706} a^{7} + \frac{224104302851574084348229933}{6086782543627683271089949706} a^{6} - \frac{789888058815219457209296154}{3043391271813841635544974853} a^{5} - \frac{4349573430874179406198320513}{12173565087255366542179899412} a^{4} + \frac{1405655742668652647922066024}{3043391271813841635544974853} a^{3} - \frac{896079483740883095223154932}{3043391271813841635544974853} a^{2} + \frac{1347285255000692957546586481}{6086782543627683271089949706} a - \frac{2602174649539766545121439359}{12173565087255366542179899412}$, $\frac{1}{5450531300842732238694494196261070350708884708} a^{17} - \frac{48747056204234613}{5450531300842732238694494196261070350708884708} a^{16} + \frac{1862987855789072622856584713190021257769875}{1362632825210683059673623549065267587677221177} a^{15} + \frac{5477897124617135019650308565633227574022155}{2725265650421366119347247098130535175354442354} a^{14} + \frac{529408984146537059976267522753035433400936}{1362632825210683059673623549065267587677221177} a^{13} + \frac{3263960811336021172236249714203202025304467}{2725265650421366119347247098130535175354442354} a^{12} - \frac{16098575358987051744636562242446041720081117}{1362632825210683059673623549065267587677221177} a^{11} - \frac{2491025550432052614295858365704845788022591}{2725265650421366119347247098130535175354442354} a^{10} - \frac{92779489171089984063899543652406257716959591}{5450531300842732238694494196261070350708884708} a^{9} + \frac{113175915745326617525661113076727500262802755}{5450531300842732238694494196261070350708884708} a^{8} - \frac{67254764772791294884303092569529779233442117}{2725265650421366119347247098130535175354442354} a^{7} + \frac{49876669855489607738293630253236309759779835}{2725265650421366119347247098130535175354442354} a^{6} - \frac{6589084871492450766511479002904875052191637}{45045713230105225113177637985628680584370948} a^{5} - \frac{260654396269628174922558720879221132164626381}{5450531300842732238694494196261070350708884708} a^{4} - \frac{360399574596571283931426996229352043701603528}{1362632825210683059673623549065267587677221177} a^{3} + \frac{19317742245414067745925691917128908607648410}{1362632825210683059673623549065267587677221177} a^{2} + \frac{1703804561282036159322402483119544478861904081}{5450531300842732238694494196261070350708884708} a + \frac{1663158396438655801179367139848623735424368323}{5450531300842732238694494196261070350708884708}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{630}\times C_{1260}$, which has order $12700800$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 6.0.9393301608768.5, 6.0.9393301608768.6, 6.0.191700032832.15, 6.0.1431687488.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |