Properties

Label 18.0.828...936.1
Degree $18$
Signature $[0, 9]$
Discriminant $-8.285\times 10^{22}$
Root discriminant \(18.76\)
Ramified primes $2,3,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\He_3^2:S_3^2$ (as 18T650)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13)
 
gp: K = bnfinit(y^18 + 4*y^12 - 4*y^9 + 13*y^6 - 26*y^3 + 13, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13)
 

\( x^{18} + 4x^{12} - 4x^{9} + 13x^{6} - 26x^{3} + 13 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-82845576677855741607936\) \(\medspace = -\,2^{18}\cdot 3^{18}\cdot 13^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(18.76\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{6}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{7}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{8}+\frac{1}{3}a^{5}$, $\frac{1}{111}a^{15}-\frac{17}{111}a^{12}-\frac{1}{37}a^{9}-\frac{9}{37}a^{6}-\frac{3}{37}a^{3}+\frac{16}{111}$, $\frac{1}{111}a^{16}-\frac{17}{111}a^{13}-\frac{1}{37}a^{10}-\frac{9}{37}a^{7}-\frac{3}{37}a^{4}+\frac{16}{111}a$, $\frac{1}{111}a^{17}-\frac{17}{111}a^{14}-\frac{1}{37}a^{11}-\frac{9}{37}a^{8}-\frac{3}{37}a^{5}+\frac{16}{111}a^{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1}{3} a^{15} + \frac{1}{3} a^{12} + \frac{5}{3} a^{9} + \frac{13}{3} a^{3} - 5 \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11}{111}a^{15}-\frac{2}{111}a^{12}+\frac{41}{111}a^{9}-\frac{38}{111}a^{6}+\frac{41}{37}a^{3}-\frac{194}{111}$, $\frac{52}{111}a^{15}+\frac{41}{111}a^{12}+\frac{251}{111}a^{9}+\frac{2}{111}a^{6}+\frac{716}{111}a^{3}-\frac{253}{37}$, $\frac{7}{37}a^{16}-\frac{25}{111}a^{15}+\frac{13}{111}a^{13}-\frac{19}{111}a^{12}+\frac{85}{111}a^{10}-\frac{110}{111}a^{9}-\frac{49}{111}a^{7}+\frac{3}{37}a^{6}+\frac{85}{37}a^{4}-\frac{256}{111}a^{3}-\frac{404}{111}a+\frac{138}{37}$, $\frac{50}{111}a^{17}+\frac{10}{111}a^{15}+\frac{38}{111}a^{14}+\frac{5}{37}a^{12}+\frac{220}{111}a^{11}+\frac{44}{111}a^{9}-\frac{6}{37}a^{8}-\frac{11}{111}a^{6}+\frac{623}{111}a^{5}+\frac{44}{37}a^{3}-\frac{239}{37}a^{2}-a-\frac{33}{37}$, $\frac{7}{37}a^{16}-\frac{7}{37}a^{15}+\frac{13}{111}a^{13}-\frac{13}{111}a^{12}+\frac{85}{111}a^{10}-\frac{85}{111}a^{9}-\frac{49}{111}a^{7}+\frac{49}{111}a^{6}+\frac{85}{37}a^{4}-\frac{85}{37}a^{3}-\frac{404}{111}a+\frac{404}{111}$, $\frac{9}{37}a^{16}+\frac{25}{111}a^{15}+\frac{22}{111}a^{13}+\frac{19}{111}a^{12}+\frac{47}{37}a^{10}+\frac{110}{111}a^{9}+\frac{11}{111}a^{7}-\frac{3}{37}a^{6}+\frac{349}{111}a^{4}+\frac{367}{111}a^{3}-\frac{152}{37}a-\frac{101}{37}$, $\frac{11}{111}a^{16}+\frac{23}{111}a^{15}-\frac{2}{111}a^{13}+\frac{16}{111}a^{12}+\frac{41}{111}a^{10}+\frac{116}{111}a^{9}-\frac{38}{111}a^{7}-\frac{29}{111}a^{6}+\frac{41}{37}a^{4}+\frac{116}{37}a^{3}-\frac{194}{111}a-\frac{446}{111}$, $\frac{11}{111}a^{17}-\frac{22}{37}a^{16}+\frac{14}{111}a^{15}-\frac{2}{111}a^{14}-\frac{62}{111}a^{13}+\frac{7}{37}a^{12}+\frac{41}{111}a^{11}-\frac{320}{111}a^{10}+\frac{23}{37}a^{9}-\frac{38}{111}a^{8}-\frac{31}{111}a^{7}+\frac{29}{111}a^{6}+\frac{41}{37}a^{5}-\frac{283}{37}a^{4}+\frac{133}{111}a^{3}-\frac{305}{111}a^{2}+\frac{979}{111}a-\frac{109}{111}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18508.8363905 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 18508.8363905 \cdot 1}{4\cdot\sqrt{82845576677855741607936}}\cr\approx \mathstrut & 0.245359725836 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 4*x^12 - 4*x^9 + 13*x^6 - 26*x^3 + 13);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\He_3^2:S_3^2$ (as 18T650):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 26244
The 109 conjugacy class representatives for $\He_3^2:S_3^2$ are not computed
Character table for $\He_3^2:S_3^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 6.0.10816.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{3}$ $18$ R ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ $18$ $18$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ $18$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.12.12.26$x^{12} + 12 x^{11} + 98 x^{10} + 542 x^{9} + 2359 x^{8} + 7956 x^{7} + 21831 x^{6} + 47308 x^{5} + 82476 x^{4} + 109442 x^{3} + 112071 x^{2} + 76900 x + 33205$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
\(3\) Copy content Toggle raw display Deg $18$$3$$6$$18$
\(13\) Copy content Toggle raw display 13.9.8.1$x^{9} + 26$$9$$1$$8$$C_9:C_3$$[\ ]_{9}^{3}$
13.9.0.1$x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$$1$$9$$0$$C_9$$[\ ]^{9}$