Normalized defining polynomial
\( x^{18} + 44 x^{16} - 486 x^{14} + 560850 x^{12} - 132405 x^{10} - 443361489 x^{8} + 89577029604 x^{6} - 2977593837154 x^{4} + 40489309311755 x^{2} + 1165327834895671 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8275608770373144126499153648830644224=-\,2^{18}\cdot 7^{12}\cdot 97^{6}\cdot 1399^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 97, 1399$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{97} a^{8} + \frac{44}{97} a^{6} - \frac{1}{97} a^{4} - \frac{4}{97} a^{2}$, $\frac{1}{97} a^{9} + \frac{44}{97} a^{7} - \frac{1}{97} a^{5} - \frac{4}{97} a^{3}$, $\frac{1}{9409} a^{10} + \frac{44}{9409} a^{8} - \frac{486}{9409} a^{6} - \frac{3690}{9409} a^{4} - \frac{7}{97} a^{2}$, $\frac{1}{9409} a^{11} + \frac{44}{9409} a^{9} - \frac{486}{9409} a^{7} - \frac{3690}{9409} a^{5} - \frac{7}{97} a^{3}$, $\frac{1}{912673} a^{12} + \frac{44}{912673} a^{10} - \frac{486}{912673} a^{8} - \frac{351823}{912673} a^{6} - \frac{1365}{9409} a^{4} + \frac{21}{97} a^{2}$, $\frac{1}{912673} a^{13} + \frac{44}{912673} a^{11} - \frac{486}{912673} a^{9} - \frac{351823}{912673} a^{7} - \frac{1365}{9409} a^{5} + \frac{21}{97} a^{3}$, $\frac{1}{88529281} a^{14} + \frac{44}{88529281} a^{12} - \frac{486}{88529281} a^{10} - \frac{351823}{88529281} a^{8} - \frac{415361}{912673} a^{6} + \frac{21}{9409} a^{4} - \frac{12}{97} a^{2}$, $\frac{1}{88529281} a^{15} + \frac{44}{88529281} a^{13} - \frac{486}{88529281} a^{11} - \frac{351823}{88529281} a^{9} - \frac{415361}{912673} a^{7} + \frac{21}{9409} a^{5} - \frac{12}{97} a^{3}$, $\frac{1}{508387518986143772563140052556556823023259} a^{16} + \frac{1602054915003718378814435993625883}{508387518986143772563140052556556823023259} a^{14} - \frac{84870608443986495843863649518593503}{508387518986143772563140052556556823023259} a^{12} - \frac{6090550887575574431424105057846219926}{508387518986143772563140052556556823023259} a^{10} - \frac{9422462251322521748237517803765388451}{5241108443156121366630309820170688897147} a^{8} + \frac{17049665373520014411372554318303619300}{54032045805733209965260925981141122651} a^{6} + \frac{56625058092484930896768965194791100}{557031400059105257373823979187021883} a^{4} + \frac{2029465152964613826182607249403611}{5742591753186652137874474012237339} a^{2} - \frac{28225365171394171935014283250796}{59201976836975795235819319713787}$, $\frac{1}{508387518986143772563140052556556823023259} a^{17} + \frac{1602054915003718378814435993625883}{508387518986143772563140052556556823023259} a^{15} - \frac{84870608443986495843863649518593503}{508387518986143772563140052556556823023259} a^{13} - \frac{6090550887575574431424105057846219926}{508387518986143772563140052556556823023259} a^{11} - \frac{9422462251322521748237517803765388451}{5241108443156121366630309820170688897147} a^{9} + \frac{17049665373520014411372554318303619300}{54032045805733209965260925981141122651} a^{7} + \frac{56625058092484930896768965194791100}{557031400059105257373823979187021883} a^{5} + \frac{2029465152964613826182607249403611}{5742591753186652137874474012237339} a^{3} - \frac{28225365171394171935014283250796}{59201976836975795235819319713787} a$
Class group and class number
$C_{2}\times C_{4}\times C_{276}$, which has order $2208$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31231444.8002 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.2022708581824.2, 9.3.164590951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 97 | Data not computed | ||||||
| 1399 | Data not computed | ||||||