Normalized defining polynomial
\( x^{18} + 17 x^{16} - 7 x^{15} + 174 x^{14} - 142 x^{13} + 1276 x^{12} - 1068 x^{11} + 6618 x^{10} - 6859 x^{9} + 25026 x^{8} - 25559 x^{7} + 58530 x^{6} - 44688 x^{5} + 47915 x^{4} - 20759 x^{3} + 14724 x^{2} - 2412 x + 216 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-823903027170640554647911051=-\,7^{12}\cdot 53^{6}\cdot 139^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{6} a^{7} - \frac{1}{9} a^{6} - \frac{1}{18} a^{5} - \frac{4}{9} a^{4} - \frac{1}{18} a^{2} + \frac{1}{6} a$, $\frac{1}{14338525657228875905375270056196412} a^{17} + \frac{170674780076076938410625397326561}{7169262828614437952687635028098206} a^{16} + \frac{525704991702574854877977854008309}{14338525657228875905375270056196412} a^{15} + \frac{331453650723231143752298607226787}{14338525657228875905375270056196412} a^{14} + \frac{28449565966659214313456380074613}{3584631414307218976343817514049103} a^{13} - \frac{1051409778552698046056451785891759}{7169262828614437952687635028098206} a^{12} - \frac{44728979770108738957898743610457}{398292379367468775149313057116567} a^{11} - \frac{533885496474933539464238372096524}{3584631414307218976343817514049103} a^{10} - \frac{352614540304480084906952557298525}{2389754276204812650895878342699402} a^{9} - \frac{214938233099621383980739166911547}{1593169517469875100597252228466268} a^{8} - \frac{751884290349743685370138476685672}{3584631414307218976343817514049103} a^{7} + \frac{1307444295059445132224034126429671}{4779508552409625301791756685398804} a^{6} + \frac{585138781592644878714957907895348}{1194877138102406325447939171349701} a^{5} + \frac{581694470051582228308221811959584}{1194877138102406325447939171349701} a^{4} + \frac{4595860751414245958719321459884395}{14338525657228875905375270056196412} a^{3} + \frac{2286203845796283085554953253955799}{14338525657228875905375270056196412} a^{2} - \frac{314164840341435123516018354343989}{796584758734937550298626114233134} a - \frac{136367149911581958989927950762298}{398292379367468775149313057116567}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23621.7133529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_4$ (as 18T61):
| A solvable group of order 144 |
| The 30 conjugacy class representatives for $C_6\times S_4$ |
| Character table for $C_6\times S_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 6.0.937472851.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $53$ | 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $139$ | 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |