Properties

Label 18.0.82220446954...9571.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,23^{9}\cdot 37^{17}$
Root discriminant $145.19$
Ramified primes $23, 37$
Class number $2214880$ (GRH)
Class group $[2, 4, 276860]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13375615217, -3279342495, 3392343195, -3721651392, 1226326338, -1040646774, 446565912, -122956128, 89713575, -9611761, 10183475, -549752, 567199, -15867, 15660, -206, 205, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 + 205*x^16 - 206*x^15 + 15660*x^14 - 15867*x^13 + 567199*x^12 - 549752*x^11 + 10183475*x^10 - 9611761*x^9 + 89713575*x^8 - 122956128*x^7 + 446565912*x^6 - 1040646774*x^5 + 1226326338*x^4 - 3721651392*x^3 + 3392343195*x^2 - 3279342495*x + 13375615217)
 
gp: K = bnfinit(x^18 - x^17 + 205*x^16 - 206*x^15 + 15660*x^14 - 15867*x^13 + 567199*x^12 - 549752*x^11 + 10183475*x^10 - 9611761*x^9 + 89713575*x^8 - 122956128*x^7 + 446565912*x^6 - 1040646774*x^5 + 1226326338*x^4 - 3721651392*x^3 + 3392343195*x^2 - 3279342495*x + 13375615217, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} + 205 x^{16} - 206 x^{15} + 15660 x^{14} - 15867 x^{13} + 567199 x^{12} - 549752 x^{11} + 10183475 x^{10} - 9611761 x^{9} + 89713575 x^{8} - 122956128 x^{7} + 446565912 x^{6} - 1040646774 x^{5} + 1226326338 x^{4} - 3721651392 x^{3} + 3392343195 x^{2} - 3279342495 x + 13375615217 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-822204469544577674838182026941616159571=-\,23^{9}\cdot 37^{17}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $145.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(851=23\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{851}(1,·)$, $\chi_{851}(645,·)$, $\chi_{851}(70,·)$, $\chi_{851}(321,·)$, $\chi_{851}(781,·)$, $\chi_{851}(206,·)$, $\chi_{851}(530,·)$, $\chi_{851}(599,·)$, $\chi_{851}(344,·)$, $\chi_{851}(737,·)$, $\chi_{851}(804,·)$, $\chi_{851}(231,·)$, $\chi_{851}(620,·)$, $\chi_{851}(850,·)$, $\chi_{851}(47,·)$, $\chi_{851}(114,·)$, $\chi_{851}(507,·)$, $\chi_{851}(252,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{17} - \frac{24959961662275374323411547927273464498198759682491618042305611224036153114547028958969}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{16} + \frac{4686353067887499103454723604182528792609527281324824806082595147471624001703029847095}{13449978370194262398109583799539480352789959504781617998207712876209405135862058564523} a^{15} - \frac{454370362032805198409295459423298788751578047951268392758995315079531824239928181290381}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{14} - \frac{384761691759314884192877608469633524449775990478750630400347826904405639687561881767964}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{13} - \frac{387966064221204850911220429009175742791502410217379153972386237835278535471420712767319}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{12} + \frac{294490869989128669256650158877340083863919176785821671539764596716950918858501831240889}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{11} + \frac{9705633987236471707047664355971733555164526326350905069821797773469842173293430125805}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{10} + \frac{437698870767190129057946257118278870683256613816746361079360102641133082714636719727960}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{9} + \frac{222586643079759196970607592358646831809792159784005436100801135343299543336296133531960}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{8} + \frac{4317141271653021247279502853292574222759087215776139660522128389652297177174487872994}{13449978370194262398109583799539480352789959504781617998207712876209405135862058564523} a^{7} - \frac{393462656652214279716605129571784491696972506594008318298375471838503509581647661364366}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{6} + \frac{319528987014952842259097071632037571713278596028751152048187796270189886383965106359604}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{5} - \frac{422534246743510078197951630792834720347915083868018893881491734954984432165070113653831}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{4} + \frac{53202441901448805264997825238908580351377545997379852342078672484615085067937540566434}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{3} - \frac{110856310036598798599660841141344383160954088433655588700372910397222327565673555552527}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a^{2} + \frac{393329145304437486734572736154705222213259789651812831511280589298405472930225666218123}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179} a - \frac{447639440534542283471270098823850707338057676786030616812578707421634508288724769007493}{981848421024181155061999617366382065753667043849058113869163039963286574917930275210179}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{276860}$, which has order $2214880$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 409151.3102125697 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-851}) \), 3.3.1369.1, 6.0.843707924819.1, 9.9.3512479453921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ $18$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
37Data not computed