Normalized defining polynomial
\( x^{18} - 66 x^{15} + 2023 x^{12} - 37588 x^{9} + 405226 x^{6} - 2133434 x^{3} + 4826809 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-82093079540334326292418501443301587=-\,3^{27}\cdot 37^{6}\cdot 127^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{252818758486} a^{15} + \frac{52485647731}{252818758486} a^{12} - \frac{28817866253}{126409379243} a^{9} + \frac{53500076579}{252818758486} a^{6} + \frac{20885406951}{126409379243} a^{3} - \frac{32456652342}{126409379243}$, $\frac{1}{42726370184134} a^{16} - \frac{2817968209102}{21363185092067} a^{13} + \frac{9675886469205}{42726370184134} a^{10} + \frac{2328868902953}{42726370184134} a^{7} - \frac{16265039108445}{42726370184134} a^{4} + \frac{6793649826780}{21363185092067} a$, $\frac{1}{7220756561118646} a^{17} - \frac{344628929682174}{3610378280559323} a^{14} - \frac{69933204587632}{3610378280559323} a^{11} + \frac{588652024483319}{3610378280559323} a^{8} + \frac{1265526066415575}{7220756561118646} a^{5} + \frac{974930628796575}{7220756561118646} a^{2}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{432455176}{21363185092067} a^{16} - \frac{19436158531}{21363185092067} a^{13} + \frac{913263466847}{42726370184134} a^{10} - \frac{12598229555089}{42726370184134} a^{7} + \frac{36122763165532}{21363185092067} a^{4} - \frac{195449658434981}{42726370184134} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3792546979.2003746 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 6.0.434612469483.2, 6.0.596176227.1, \(\Q(\zeta_{9})\), 6.0.434612469483.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.3.2.2 | $x^{3} + 1143$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.2 | $x^{3} + 1143$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.2 | $x^{3} + 1143$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |