Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 45 x^{15} + 99 x^{14} - 150 x^{13} + 100 x^{12} + 123 x^{11} - 390 x^{10} + 379 x^{9} + 78 x^{8} - 738 x^{7} + 1138 x^{6} - 1023 x^{5} + 606 x^{4} - 247 x^{3} + 69 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-819160565714194205043=-\,3^{21}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{15} - \frac{3}{14} a^{14} + \frac{3}{14} a^{11} - \frac{1}{14} a^{10} - \frac{1}{2} a^{9} - \frac{3}{14} a^{8} + \frac{3}{14} a^{7} - \frac{5}{14} a^{6} - \frac{2}{7} a^{5} - \frac{1}{2} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{5}{14}$, $\frac{1}{14} a^{16} - \frac{1}{7} a^{14} + \frac{3}{14} a^{12} - \frac{3}{7} a^{11} - \frac{3}{14} a^{10} + \frac{2}{7} a^{9} + \frac{1}{14} a^{8} + \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{5}{14} a^{5} - \frac{1}{14} a^{4} + \frac{5}{14} a^{3} + \frac{5}{14} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{3587142986} a^{17} - \frac{50184383}{1793571493} a^{16} - \frac{15176239}{512448998} a^{15} + \frac{49087498}{1793571493} a^{14} - \frac{221178330}{1793571493} a^{13} - \frac{155760368}{1793571493} a^{12} + \frac{1204764465}{3587142986} a^{11} + \frac{422092768}{1793571493} a^{10} + \frac{633927121}{1793571493} a^{9} + \frac{117640812}{1793571493} a^{8} + \frac{230864930}{1793571493} a^{7} + \frac{656769439}{3587142986} a^{6} + \frac{677475991}{3587142986} a^{5} - \frac{800951946}{1793571493} a^{4} + \frac{752434717}{1793571493} a^{3} - \frac{245269986}{1793571493} a^{2} - \frac{173503718}{1793571493} a + \frac{380696387}{1793571493}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{51979339}{3429391} a^{17} + \frac{279634776}{3429391} a^{16} - \frac{763174681}{3429391} a^{15} + \frac{1870676501}{3429391} a^{14} - \frac{3998352901}{3429391} a^{13} + \frac{5347867137}{3429391} a^{12} - \frac{1945799574}{3429391} a^{11} - \frac{7522234641}{3429391} a^{10} + \frac{15597623991}{3429391} a^{9} - \frac{10170608314}{3429391} a^{8} - \frac{10121991233}{3429391} a^{7} + \frac{31978735966}{3429391} a^{6} - \frac{39542799466}{3429391} a^{5} + \frac{29164636624}{3429391} a^{4} - \frac{13969705025}{3429391} a^{3} + \frac{4532439157}{3429391} a^{2} - \frac{925787454}{3429391} a + \frac{94308798}{3429391} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2958.28701084 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.621.1, 3.1.23.1, 6.0.1156923.2 x2, 6.0.1156923.1, 6.0.14283.1, 9.3.5508110403.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.1156923.2 |
| Degree 9 sibling: | 9.3.5508110403.1 |
| Degree 12 sibling: | 12.0.708051067974441.1 |
| Degree 18 siblings: | 18.0.697803444867646915407.1, 18.6.18840693011426466715989.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |