Normalized defining polynomial
\( x^{18} - 18 x^{16} - 22 x^{15} + 153 x^{14} + 300 x^{13} - 416 x^{12} - 1926 x^{11} - 1308 x^{10} + 4148 x^{9} + 10962 x^{8} + 7584 x^{7} - 13782 x^{6} - 39294 x^{5} - 36777 x^{4} + 9544 x^{3} + 67788 x^{2} + 78738 x + 34061 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8055620642901114529869201408=-\,2^{18}\cdot 3^{19}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{18} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{2}{9} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a + \frac{2}{9}$, $\frac{1}{2412} a^{16} + \frac{4}{201} a^{15} - \frac{37}{804} a^{14} - \frac{191}{402} a^{13} - \frac{29}{67} a^{12} - \frac{15}{134} a^{11} - \frac{224}{603} a^{10} - \frac{62}{201} a^{9} + \frac{16}{201} a^{8} - \frac{62}{201} a^{7} - \frac{9}{134} a^{6} - \frac{25}{67} a^{5} - \frac{20}{67} a^{4} - \frac{29}{134} a^{3} - \frac{91}{804} a^{2} + \frac{5}{18} a - \frac{209}{804}$, $\frac{1}{9098568105463597055888061699156} a^{17} + \frac{81773445500112217118486221}{2274642026365899263972015424789} a^{16} - \frac{125811203646928539480502109591}{9098568105463597055888061699156} a^{15} + \frac{103384245487169715528199782805}{758214008788633087990671808263} a^{14} - \frac{179310538965573525875733092036}{758214008788633087990671808263} a^{13} + \frac{202002442710564932018587725547}{1516428017577266175981343616526} a^{12} - \frac{261219297563350757559071500922}{2274642026365899263972015424789} a^{11} + \frac{848988181466865675759601126822}{2274642026365899263972015424789} a^{10} + \frac{918311044016052565296117608416}{2274642026365899263972015424789} a^{9} + \frac{227764307621701112164744356329}{758214008788633087990671808263} a^{8} - \frac{303786243410599506503197970717}{1516428017577266175981343616526} a^{7} - \frac{277627407900931584816029573042}{758214008788633087990671808263} a^{6} - \frac{56353190223852198755628346906}{252738002929544362663557269421} a^{5} + \frac{183193043731154964348952320317}{505476005859088725327114538842} a^{4} - \frac{87870186522585887208894536587}{3032856035154532351962687233052} a^{3} + \frac{65541171195745833235172627471}{4549284052731798527944030849578} a^{2} - \frac{994292183739737907349231524647}{9098568105463597055888061699156} a - \frac{1203016847210414205677144334925}{4549284052731798527944030849578}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1940041.86545 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.1.31.1, 6.0.5719872.3, 9.3.37528080192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.12.6 | $x^{12} + 24 x^{11} - 3 x^{10} + 81 x^{9} - 18 x^{8} + 54 x^{7} + 108 x^{5} - 54 x^{4} - 27 x^{3} - 81 x - 81$ | $3$ | $4$ | $12$ | 12T39 | $[3/2, 3/2]_{2}^{4}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.8.6.1 | $x^{8} - 7471 x^{4} + 19927296$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |