Normalized defining polynomial
\( x^{18} - 3 x^{17} + 33 x^{16} - 91 x^{15} + 972 x^{14} - 3216 x^{13} + 17387 x^{12} - 47466 x^{11} + 246777 x^{10} - 744566 x^{9} + 2781420 x^{8} - 5768394 x^{7} + 20679591 x^{6} - 45616323 x^{5} + 134273652 x^{4} - 125897574 x^{3} + 462427464 x^{2} - 1117528098 x + 2682840203 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-79892001943166438658690014520815616=-\,2^{12}\cdot 3^{18}\cdot 7^{15}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{6} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7}$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{7} + \frac{1}{7}$, $\frac{1}{35} a^{15} - \frac{2}{35} a^{14} + \frac{1}{35} a^{13} + \frac{2}{35} a^{12} + \frac{3}{7} a^{11} + \frac{6}{35} a^{10} + \frac{12}{35} a^{9} - \frac{9}{35} a^{8} + \frac{2}{7} a^{7} + \frac{8}{35} a^{6} - \frac{3}{7} a^{5} - \frac{9}{35} a^{4} + \frac{13}{35} a^{3} + \frac{3}{7} a^{2} - \frac{11}{35} a + \frac{6}{35}$, $\frac{1}{96005} a^{16} - \frac{1143}{96005} a^{15} - \frac{3932}{96005} a^{14} - \frac{249}{96005} a^{13} + \frac{151}{7385} a^{12} - \frac{5662}{13715} a^{11} + \frac{43516}{96005} a^{10} - \frac{25176}{96005} a^{9} - \frac{33451}{96005} a^{8} - \frac{33767}{96005} a^{7} - \frac{6444}{13715} a^{6} - \frac{3629}{96005} a^{5} + \frac{13787}{96005} a^{4} - \frac{5334}{13715} a^{3} + \frac{45574}{96005} a^{2} - \frac{17373}{96005} a + \frac{11909}{96005}$, $\frac{1}{17959693180299501978789128110232854850154997071667541560776455395} a^{17} - \frac{8946776112730087523804571846676012624135363945684652311763}{2565670454328500282684161158604693550022142438809648794396636485} a^{16} - \frac{100369983452753179743015651839985755322434789733003201378520388}{17959693180299501978789128110232854850154997071667541560776455395} a^{15} + \frac{983556412756225921878222037722892295393167796935109806770362047}{17959693180299501978789128110232854850154997071667541560776455395} a^{14} + \frac{29609277044276640930610381815013709666873195414226006898836895}{513134090865700056536832231720938710004428487761929758879327297} a^{13} + \frac{588010230880403503718038327863056356781644310356838939341719472}{17959693180299501978789128110232854850154997071667541560776455395} a^{12} - \frac{400837917839205760078064512218629959921678530907701659391134884}{1381514860023038613753009854633296526934999774743657043136650415} a^{11} - \frac{1904484205016302645621384457065375168021487552309919657188327519}{17959693180299501978789128110232854850154997071667541560776455395} a^{10} - \frac{7991174968977164489208205513125115124955761187703725110577516133}{17959693180299501978789128110232854850154997071667541560776455395} a^{9} + \frac{4626062852690087627038828196578621711303732150795323383640563661}{17959693180299501978789128110232854850154997071667541560776455395} a^{8} + \frac{5079377386966585480917068193805277654320425434209876288600047228}{17959693180299501978789128110232854850154997071667541560776455395} a^{7} + \frac{1257421411642703584613894396304908685860041504157868402989715097}{3591938636059900395757825622046570970030999414333508312155291079} a^{6} - \frac{236339117978330524289744021862858735017162825123901162852222718}{2565670454328500282684161158604693550022142438809648794396636485} a^{5} + \frac{8194703733279411929049221413621902112753724365688566545216963406}{17959693180299501978789128110232854850154997071667541560776455395} a^{4} + \frac{788205203502196844645088533486101817347807095543881767272774579}{2565670454328500282684161158604693550022142438809648794396636485} a^{3} + \frac{170173887596789733628068876488250218679967709157070806450799880}{513134090865700056536832231720938710004428487761929758879327297} a^{2} - \frac{6591521945660548929051005690937558309952470566093684703289705837}{17959693180299501978789128110232854850154997071667541560776455395} a - \frac{3587616032195639123138490669362389153303747656227609200103511002}{17959693180299501978789128110232854850154997071667541560776455395}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{468}$, which has order $29952$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), \(\Q(\zeta_{7})^+\), 3.3.756.1, 6.0.36924979.1, 6.0.8789652144.11, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |