Normalized defining polynomial
\( x^{18} - 6 x^{17} - 138 x^{16} + 738 x^{15} + 7908 x^{14} - 39702 x^{13} - 151035 x^{12} + 1155498 x^{11} + 518775 x^{10} - 10423648 x^{9} + 25952187 x^{8} - 144337500 x^{7} + 914131653 x^{6} - 2002698378 x^{5} + 5393042586 x^{4} - 14614241886 x^{3} + 37957823343 x^{2} - 8673549336 x + 134550076329 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-79794198402451666358803683478559912448000000000=-\,2^{18}\cdot 3^{30}\cdot 5^{9}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $403.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{11} + \frac{1}{12} a^{10} + \frac{1}{6} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{12} a^{9} + \frac{5}{12} a^{7} - \frac{1}{6} a^{6} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{14} - \frac{1}{24} a^{13} - \frac{1}{24} a^{11} + \frac{1}{12} a^{10} + \frac{3}{8} a^{9} - \frac{1}{6} a^{8} - \frac{1}{24} a^{7} + \frac{1}{12} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{8}$, $\frac{1}{1151802795576} a^{16} - \frac{1563812181}{95983566298} a^{15} - \frac{15008529143}{575901397788} a^{14} - \frac{6716069151}{383934265192} a^{13} + \frac{42026896939}{1151802795576} a^{12} + \frac{8649128239}{383934265192} a^{11} + \frac{6435960933}{383934265192} a^{10} + \frac{91291031}{6897022728} a^{9} - \frac{58304894555}{383934265192} a^{8} - \frac{219611200843}{1151802795576} a^{7} - \frac{119276006987}{1151802795576} a^{6} + \frac{110898209035}{1151802795576} a^{5} + \frac{120280743339}{383934265192} a^{4} - \frac{124007196677}{383934265192} a^{3} + \frac{7809411321}{95983566298} a^{2} - \frac{20211655257}{383934265192} a - \frac{44508895425}{383934265192}$, $\frac{1}{314788957500931715219632355187185851526619844641012232511221672565946264} a^{17} - \frac{8200460732264682043891515967047034166953610289171873594047}{104929652500310571739877451729061950508873281547004077503740557521982088} a^{16} - \frac{1318617381303572507334604037433714967938455208440721876170538685481699}{104929652500310571739877451729061950508873281547004077503740557521982088} a^{15} - \frac{6101304536414724270886710183364709096014072669993624327259417184128621}{157394478750465857609816177593592925763309922320506116255610836282973132} a^{14} + \frac{12834923472897911713901963211064956114460728547476337220006031012742183}{314788957500931715219632355187185851526619844641012232511221672565946264} a^{13} - \frac{435072817155710046901880675916134460791217349593194593274658411566719}{52464826250155285869938725864530975254436640773502038751870278760991044} a^{12} + \frac{40446630145636408470625895591182165044657161921624565772854809062332797}{314788957500931715219632355187185851526619844641012232511221672565946264} a^{11} + \frac{2563955170204817906660372654091786734499570690668880709803939890930921}{78697239375232928804908088796796462881654961160253058127805418141486566} a^{10} + \frac{72056340296760722632063697693550995851879371556688180099709215277964123}{314788957500931715219632355187185851526619844641012232511221672565946264} a^{9} + \frac{31014124744121143565781818025040887584557730330876454250311675734755825}{157394478750465857609816177593592925763309922320506116255610836282973132} a^{8} + \frac{15439310006381147854863539959495324463196675725099902340504671933438501}{104929652500310571739877451729061950508873281547004077503740557521982088} a^{7} + \frac{23757931423340013486402597356615669780670780651915357024257608859273621}{78697239375232928804908088796796462881654961160253058127805418141486566} a^{6} - \frac{20954359960746441435860655969133323206746026166418889486179141414500255}{314788957500931715219632355187185851526619844641012232511221672565946264} a^{5} + \frac{629670920341343431500830161844444169094491209468050509570047805756248}{13116206562538821467484681466132743813609160193375509687967569690247761} a^{4} - \frac{2845661799491241532882277982468350693016046819421090668834119697414157}{26232413125077642934969362932265487627218320386751019375935139380495522} a^{3} + \frac{35708824343444286093529709590290375167259082796623225721802747329692491}{104929652500310571739877451729061950508873281547004077503740557521982088} a^{2} - \frac{8288355286713619024032479652029219342346379165743209904837338069305511}{26232413125077642934969362932265487627218320386751019375935139380495522} a + \frac{22764707549006822436488537962757236146729585199056157754165596900791989}{52464826250155285869938725864530975254436640773502038751870278760991044}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{18}\times C_{181818}$, which has order $235636128$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54921872.620261565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.77841.2, 3.3.837.1, 6.0.48473770248000.4, 6.0.5604552000.4, 9.9.394775941205626677.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.9.15.12 | $x^{9} + 3 x^{8} + 3 x^{7} + 6 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.12 | $x^{9} + 3 x^{8} + 3 x^{7} + 6 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $31$ | 31.6.4.2 | $x^{6} - 31 x^{3} + 11532$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.12.10.3 | $x^{12} - 7471 x^{6} + 19927296$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |