Normalized defining polynomial
\( x^{18} + 248166 x^{12} + 3825681705 x^{6} + 1855425871872 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7959340260508580929689411840109697873368492825644925717707=-\,3^{31}\cdot 7^{12}\cdot 13^{12}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1647.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{576} a^{7} + \frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{47}{192} a$, $\frac{1}{1152} a^{8} - \frac{47}{384} a^{2}$, $\frac{1}{1152} a^{9} - \frac{47}{384} a^{3}$, $\frac{1}{1152} a^{10} - \frac{47}{384} a^{4}$, $\frac{1}{2304} a^{11} - \frac{1}{2304} a^{8} - \frac{47}{768} a^{5} + \frac{47}{768} a^{2}$, $\frac{1}{43827754752} a^{12} + \frac{1}{3456} a^{10} - \frac{1}{2304} a^{9} + \frac{219291857}{14609251584} a^{6} - \frac{239}{1152} a^{4} + \frac{47}{768} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{2281414}{19022463}$, $\frac{1}{43827754752} a^{13} - \frac{1}{6912} a^{11} - \frac{1}{2304} a^{10} - \frac{1}{2304} a^{8} - \frac{8977699}{14609251584} a^{7} - \frac{337}{2304} a^{5} + \frac{47}{768} a^{4} + \frac{1}{3} a^{3} - \frac{337}{768} a^{2} + \frac{393302515}{1217437632} a$, $\frac{1}{701244076032} a^{14} + \frac{49408129}{116874012672} a^{8} + \frac{1}{6} a^{4} + \frac{30595147777}{77916008448} a^{2} - \frac{1}{2} a$, $\frac{1}{89759241732096} a^{15} - \frac{5124701807}{14959873622016} a^{9} - \frac{1}{6} a^{5} + \frac{4023181861921}{9973249081344} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{5744591470854144} a^{16} - \frac{57068707439}{957431911809024} a^{10} - \frac{1}{1152} a^{7} + \frac{1}{6} a^{5} - \frac{26000453393375}{638287941206016} a^{4} - \frac{1}{2} a^{2} + \frac{47}{384} a$, $\frac{1}{1102961562403995648} a^{17} - \frac{1}{1402488152064} a^{14} + \frac{6591764013457}{183826927067332608} a^{11} + \frac{1}{3456} a^{9} - \frac{49408129}{233748025344} a^{8} - \frac{26182508377398239}{122551284711555072} a^{5} + \frac{1}{6} a^{4} + \frac{337}{1152} a^{3} + \frac{47320860671}{155832016896} a^{2} - \frac{1}{6} a$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{18}\times C_{18}\times C_{126}\times C_{126}$, which has order $11249543088$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{114635046912} a^{15} - \frac{126131}{57317523456} a^{9} - \frac{1520139363}{38211682304} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10228947091425.262 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.413412363.1 x3, Deg 3, 6.0.512729345643731307.1, 6.0.4614564110793581763.3, 6.0.301377612627.3 x2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $43$ | 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |