Normalized defining polynomial
\( x^{18} - x^{17} + 134 x^{16} - 134 x^{15} + 7582 x^{14} - 7582 x^{13} + 235677 x^{12} - 235677 x^{11} + 4387006 x^{10} - 4387006 x^{9} + 50051625 x^{8} - 50051625 x^{7} + 345115317 x^{6} - 345115317 x^{5} + 1377838239 x^{4} - 1377838239 x^{3} + 3020806524 x^{2} - 3020806524 x + 3787525057 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-79504772150118146627331158545105991=-\,19^{17}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(551=19\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{551}(320,·)$, $\chi_{551}(1,·)$, $\chi_{551}(260,·)$, $\chi_{551}(521,·)$, $\chi_{551}(202,·)$, $\chi_{551}(465,·)$, $\chi_{551}(86,·)$, $\chi_{551}(349,·)$, $\chi_{551}(30,·)$, $\chi_{551}(291,·)$, $\chi_{551}(550,·)$, $\chi_{551}(231,·)$, $\chi_{551}(233,·)$, $\chi_{551}(173,·)$, $\chi_{551}(175,·)$, $\chi_{551}(376,·)$, $\chi_{551}(378,·)$, $\chi_{551}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{704442593} a^{10} + \frac{205178485}{704442593} a^{9} + \frac{70}{704442593} a^{8} + \frac{246277881}{704442593} a^{7} + \frac{1715}{704442593} a^{6} + \frac{240737350}{704442593} a^{5} + \frac{17150}{704442593} a^{4} + \frac{72159429}{704442593} a^{3} + \frac{60025}{704442593} a^{2} - \frac{59797977}{704442593} a + \frac{33614}{704442593}$, $\frac{1}{704442593} a^{11} + \frac{77}{704442593} a^{9} - \frac{27364209}{704442593} a^{8} + \frac{2156}{704442593} a^{7} - \frac{123510518}{704442593} a^{6} + \frac{26411}{704442593} a^{5} - \frac{48106286}{704442593} a^{4} + \frac{132055}{704442593} a^{3} - \frac{128506683}{704442593} a^{2} + \frac{184877}{704442593} a + \frac{327833273}{704442593}$, $\frac{1}{704442593} a^{12} - \frac{328370508}{704442593} a^{9} - \frac{3234}{704442593} a^{8} - \frac{66957344}{704442593} a^{7} - \frac{105644}{704442593} a^{6} - \frac{269374818}{704442593} a^{5} - \frac{1188495}{704442593} a^{4} - \frac{49241972}{704442593} a^{3} - \frac{4437048}{704442593} a^{2} + \frac{1179351}{704442593} a - \frac{2588278}{704442593}$, $\frac{1}{704442593} a^{13} - \frac{3822}{704442593} a^{9} - \frac{327627353}{704442593} a^{8} - \frac{142688}{704442593} a^{7} + \frac{36414595}{704442593} a^{6} - \frac{1966419}{704442593} a^{5} + \frac{190881786}{704442593} a^{4} - \frac{10487568}{704442593} a^{3} + \frac{137169911}{704442593} a^{2} - \frac{15294370}{704442593} a - \frac{64733805}{704442593}$, $\frac{1}{704442593} a^{14} - \frac{180063692}{704442593} a^{9} + \frac{124852}{704442593} a^{8} + \frac{175171529}{704442593} a^{7} + \frac{4588311}{704442593} a^{6} + \frac{287007028}{704442593} a^{5} + \frac{55059732}{704442593} a^{4} - \frac{210988907}{704442593} a^{3} + \frac{214121180}{704442593} a^{2} + \frac{331240826}{704442593} a + \frac{128472708}{704442593}$, $\frac{1}{704442593} a^{15} + \frac{156065}{704442593} a^{9} + \frac{99663295}{704442593} a^{8} + \frac{6554730}{704442593} a^{7} - \frac{154059519}{704442593} a^{6} + \frac{96354531}{704442593} a^{5} + \frac{309443774}{704442593} a^{4} - \frac{169139643}{704442593} a^{3} - \frac{312793866}{704442593} a^{2} + \frac{98511832}{704442593} a + \frac{90183832}{704442593}$, $\frac{1}{704442593} a^{16} + \frac{61909178}{704442593} a^{9} - \frac{4369820}{704442593} a^{8} + \frac{285201482}{704442593} a^{7} - \frac{171296944}{704442593} a^{6} - \frac{328271507}{704442593} a^{5} - \frac{27884021}{704442593} a^{4} + \frac{49653540}{704442593} a^{3} - \frac{111536084}{704442593} a^{2} + \frac{5992273}{704442593} a - \frac{314870759}{704442593}$, $\frac{1}{704442593} a^{17} - \frac{5714380}{704442593} a^{9} + \frac{178214580}{704442593} a^{8} - \frac{256004224}{704442593} a^{7} - \frac{131680234}{704442593} a^{6} + \frac{306590878}{704442593} a^{5} - \frac{97761509}{704442593} a^{4} + \frac{141793376}{704442593} a^{3} - \frac{157739102}{704442593} a^{2} + \frac{217121107}{704442593} a - \frac{91689570}{704442593}$
Class group and class number
$C_{376922}$, which has order $376922$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-551}) \), 3.3.361.1, 6.0.60389578511.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 29 | Data not computed | ||||||