Normalized defining polynomial
\( x^{18} - 28 x^{15} + 12 x^{14} + 48 x^{13} + 224 x^{12} - 264 x^{11} - 252 x^{10} - 620 x^{9} + 1128 x^{8} + 240 x^{7} + 2020 x^{6} - 3264 x^{5} - 264 x^{4} - 616 x^{3} + 1512 x^{2} + 288 x + 344 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7934371614720000000000000=-\,2^{24}\cdot 3^{18}\cdot 5^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{92} a^{15} - \frac{1}{23} a^{14} + \frac{3}{92} a^{13} - \frac{1}{23} a^{12} - \frac{4}{23} a^{11} - \frac{11}{46} a^{10} - \frac{7}{46} a^{9} + \frac{3}{23} a^{8} + \frac{1}{23} a^{7} - \frac{4}{23} a^{6} + \frac{7}{23} a^{5} - \frac{1}{23} a^{4} - \frac{1}{23} a^{3} + \frac{9}{23} a^{2} - \frac{4}{23} a - \frac{9}{23}$, $\frac{1}{2116} a^{16} + \frac{5}{2116} a^{15} + \frac{151}{2116} a^{14} - \frac{5}{46} a^{13} - \frac{49}{1058} a^{12} + \frac{101}{1058} a^{11} + \frac{131}{529} a^{10} + \frac{75}{529} a^{9} - \frac{110}{529} a^{8} + \frac{33}{1058} a^{7} - \frac{6}{529} a^{6} - \frac{7}{529} a^{5} + \frac{243}{529} a^{4} + \frac{2}{23} a^{3} + \frac{100}{529} a^{2} - \frac{206}{529} a - \frac{219}{529}$, $\frac{1}{102271664246835911427956} a^{17} - \frac{16772566540594998795}{102271664246835911427956} a^{16} - \frac{165180583708049811045}{102271664246835911427956} a^{15} + \frac{287153300127115851655}{51135832123417955713978} a^{14} + \frac{1310935726338373826791}{51135832123417955713978} a^{13} - \frac{5756863630886724787709}{102271664246835911427956} a^{12} + \frac{133549817486641356062}{25567916061708977856989} a^{11} + \frac{4667224055810216048296}{25567916061708977856989} a^{10} - \frac{3073093577411347217642}{25567916061708977856989} a^{9} + \frac{7805473689045844030099}{51135832123417955713978} a^{8} - \frac{2766181357547741524696}{25567916061708977856989} a^{7} - \frac{4668287049244756840893}{25567916061708977856989} a^{6} + \frac{4782961299896253260580}{25567916061708977856989} a^{5} - \frac{1831139849968600568424}{25567916061708977856989} a^{4} + \frac{7116519014316493310171}{25567916061708977856989} a^{3} + \frac{8412969580791006906077}{25567916061708977856989} a^{2} - \frac{8258889444873828532482}{25567916061708977856989} a - \frac{10833420155983143854167}{25567916061708977856989}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56479.65794539926 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.1.108.1, 6.0.23328000.1, 9.3.787320000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |