Normalized defining polynomial
\( x^{18} + 6 x^{16} - 24 x^{15} - 72 x^{14} + 132 x^{13} + 774 x^{12} + 828 x^{11} - 102 x^{10} - 416 x^{9} - 324 x^{8} - 1752 x^{7} - 1515 x^{6} + 1476 x^{5} + 1632 x^{4} - 576 x^{3} - 288 x^{2} + 192 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-781553895537094671760883712=-\,2^{18}\cdot 3^{31}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} + \frac{1}{24} a^{10} + \frac{1}{24} a^{9} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{5}{24} a^{4} - \frac{5}{24} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{72} a^{14} + \frac{1}{72} a^{13} - \frac{1}{36} a^{12} + \frac{5}{72} a^{11} - \frac{1}{72} a^{10} + \frac{1}{36} a^{9} - \frac{5}{24} a^{8} + \frac{1}{24} a^{7} - \frac{1}{3} a^{6} - \frac{19}{72} a^{5} + \frac{17}{72} a^{4} - \frac{2}{9} a^{3} + \frac{7}{18} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{72} a^{15} - \frac{1}{36} a^{12} - \frac{1}{12} a^{10} + \frac{1}{18} a^{9} - \frac{11}{36} a^{6} - \frac{1}{4} a^{4} - \frac{1}{72} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{2}{9}$, $\frac{1}{1008} a^{16} - \frac{1}{252} a^{15} + \frac{1}{252} a^{14} - \frac{5}{504} a^{13} + \frac{1}{28} a^{12} - \frac{5}{72} a^{11} + \frac{1}{63} a^{9} - \frac{2}{21} a^{8} + \frac{85}{504} a^{7} + \frac{97}{252} a^{6} - \frac{137}{504} a^{5} - \frac{389}{1008} a^{4} - \frac{5}{21} a^{3} + \frac{16}{63} a^{2} + \frac{10}{21} a + \frac{8}{63}$, $\frac{1}{5490591568331720256} a^{17} + \frac{177614821203493}{915098594721953376} a^{16} + \frac{1653810059932729}{305032864907317792} a^{15} + \frac{888802893648087}{152516432453658896} a^{14} - \frac{602941283376823}{343161973020732516} a^{13} - \frac{31393564398819241}{1372647892082930064} a^{12} + \frac{20286371872963069}{392185112023694304} a^{11} + \frac{3172304502426161}{171580986510366258} a^{10} - \frac{132439143691792375}{2745295784165860128} a^{9} - \frac{88767005107265095}{1372647892082930064} a^{8} + \frac{1905452236779979}{21788061779094128} a^{7} + \frac{43351065609648493}{228774648680488344} a^{6} + \frac{128137665943020767}{1830197189443906752} a^{5} + \frac{687453483141595781}{2745295784165860128} a^{4} + \frac{23289523716412477}{196092556011847152} a^{3} - \frac{137573668994748751}{686323946041465032} a^{2} - \frac{121582539004843765}{343161973020732516} a - \frac{17680656272880341}{171580986510366258}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4801125193}{114590730048} a^{17} - \frac{170632683}{19098455008} a^{16} + \frac{15036152261}{57295365024} a^{15} - \frac{10078936511}{9549227504} a^{14} - \frac{39110310367}{14323841256} a^{13} + \frac{170104184185}{28647682512} a^{12} + \frac{1741847757259}{57295365024} a^{11} + \frac{413765020993}{14323841256} a^{10} - \frac{60908827561}{19098455008} a^{9} - \frac{122394471931}{28647682512} a^{8} - \frac{29463888015}{9549227504} a^{7} - \frac{471986451481}{7161920628} a^{6} - \frac{1726290497513}{38196910016} a^{5} + \frac{3423014335129}{57295365024} a^{4} + \frac{1013633713667}{28647682512} a^{3} - \frac{506218354741}{14323841256} a^{2} + \frac{5221075213}{7161920628} a + \frac{7512133399}{1193653438} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18999317.186917692 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.216.1, 6.0.139968.1, 6.0.3326427.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |