Normalized defining polynomial
\( x^{18} - 3 x^{17} + 2 x^{16} + 26 x^{15} - 89 x^{14} + 205 x^{13} + 100 x^{12} - 616 x^{11} + 4994 x^{10} - 13671 x^{9} + 25036 x^{8} - 62121 x^{7} + 135600 x^{6} - 180678 x^{5} + 252318 x^{4} - 345168 x^{3} + 283896 x^{2} - 98604 x + 12501 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7709257184890088966246072986347=-\,3^{12}\cdot 53^{4}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{2}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{2}{9} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{2}{27} a^{11} - \frac{1}{27} a^{10} - \frac{8}{27} a^{8} - \frac{2}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{15} + \frac{2}{81} a^{14} + \frac{1}{27} a^{13} - \frac{4}{81} a^{12} - \frac{4}{27} a^{11} - \frac{13}{81} a^{10} + \frac{1}{81} a^{9} - \frac{26}{81} a^{8} + \frac{2}{9} a^{7} + \frac{7}{27} a^{6} + \frac{2}{9} a^{5} - \frac{2}{27} a^{4} - \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3}$, $\frac{1}{7452703193087906563093956617509093842081} a^{17} + \frac{6336206486775631058409840215837870645}{1064671884726843794727708088215584834583} a^{16} + \frac{2996436397323275201439437030530297429}{828078132565322951454884068612121538009} a^{15} + \frac{30167794311924878292868553576155327712}{7452703193087906563093956617509093842081} a^{14} + \frac{25094324767291085521620747454955186282}{1064671884726843794727708088215584834583} a^{13} + \frac{87524958796612826474193243654407273627}{7452703193087906563093956617509093842081} a^{12} + \frac{1102599576901969338651688969430303982881}{7452703193087906563093956617509093842081} a^{11} - \frac{110207187892152380809540384294517463976}{828078132565322951454884068612121538009} a^{10} - \frac{1120272958840871561522315127579078816745}{7452703193087906563093956617509093842081} a^{9} - \frac{245019968796430686950776182991971282922}{677518472098900596644905147046281258371} a^{8} - \frac{6693659184990439069562178007106115547}{32262784385661933173566911764108631351} a^{7} - \frac{810834487603459904545957848789234425969}{2484234397695968854364652205836364614027} a^{6} + \frac{568770776162670410269742438541094488016}{2484234397695968854364652205836364614027} a^{5} - \frac{1160702514502069338127841142355789332455}{2484234397695968854364652205836364614027} a^{4} + \frac{196200299229017983030907172422046951217}{828078132565322951454884068612121538009} a^{3} + \frac{253270441821515219083769784720456670283}{828078132565322951454884068612121538009} a^{2} - \frac{13778117953427159513500807438044442127}{39432292026920140545470669933910549429} a + \frac{134605700061198399891169745442233376238}{276026044188440983818294689537373846003}$
Class group and class number
$C_{2}\times C_{2}\times C_{24}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3975042.09289 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 28 conjugacy class representatives for t18n301 |
| Character table for t18n301 is not computed |
Intermediate fields
| 3.3.321.1, 6.0.99228483.4, 9.9.29824410535929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 53 | Data not computed | ||||||
| 107 | Data not computed | ||||||