Normalized defining polynomial
\( x^{18} + 3 x^{16} - 36 x^{14} - 5628 x^{12} - 31914 x^{10} + 1031922 x^{8} + 14934396 x^{6} + 76305348 x^{4} + 153013329 x^{2} + 52743747 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-769445538694487691557611230000000000000000=-\,2^{16}\cdot 3^{33}\cdot 5^{16}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $212.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{5}{32} a + \frac{11}{32}$, $\frac{1}{64} a^{10} - \frac{1}{64} a^{8} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{16} a^{5} + \frac{1}{32} a^{4} + \frac{1}{16} a^{3} - \frac{15}{64} a^{2} - \frac{7}{16} a - \frac{17}{64}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{9} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{1}{32} a^{5} - \frac{1}{16} a^{4} - \frac{15}{64} a^{3} + \frac{1}{16} a^{2} - \frac{17}{64} a - \frac{7}{16}$, $\frac{1}{128} a^{12} + \frac{1}{128} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{5} - \frac{5}{128} a^{4} + \frac{1}{16} a^{3} + \frac{7}{16} a - \frac{61}{128}$, $\frac{1}{128} a^{13} + \frac{1}{128} a^{9} - \frac{1}{16} a^{6} - \frac{5}{128} a^{5} + \frac{1}{16} a^{4} + \frac{1}{16} a^{2} - \frac{61}{128} a + \frac{7}{16}$, $\frac{1}{256} a^{14} - \frac{1}{256} a^{12} + \frac{1}{256} a^{10} + \frac{7}{256} a^{8} - \frac{1}{16} a^{7} - \frac{5}{256} a^{6} - \frac{1}{16} a^{5} + \frac{21}{256} a^{4} + \frac{1}{16} a^{3} + \frac{3}{256} a^{2} + \frac{1}{16} a - \frac{27}{256}$, $\frac{1}{1792} a^{15} + \frac{3}{1792} a^{13} + \frac{13}{1792} a^{11} + \frac{1}{256} a^{9} - \frac{1}{32} a^{8} - \frac{29}{1792} a^{7} - \frac{151}{1792} a^{5} - \frac{1}{16} a^{4} + \frac{15}{1792} a^{3} - \frac{1}{4} a^{2} + \frac{75}{256} a - \frac{5}{32}$, $\frac{1}{207628214392738108928} a^{16} - \frac{67790214689831}{3244190849886532952} a^{14} + \frac{58804576667008549}{25953526799092263616} a^{12} + \frac{3095242854877111}{463455835698076136} a^{10} + \frac{2601014042864688321}{103814107196369054464} a^{8} - \frac{147413567975986327}{6488381699773065904} a^{6} - \frac{1}{8} a^{5} - \frac{373903941508269331}{6488381699773065904} a^{4} - \frac{1}{4} a^{3} + \frac{230874957853658813}{926911671396152272} a^{2} - \frac{1}{8} a - \frac{6923444637378328733}{29661173484676872704}$, $\frac{1}{124369300421250127247872} a^{17} + \frac{7124548830422883295}{31092325105312531811968} a^{15} + \frac{1796140676817116179}{4441760729330361687424} a^{13} + \frac{143264860533140464871}{31092325105312531811968} a^{11} + \frac{876099400374813685647}{62184650210625063623936} a^{9} - \frac{1}{32} a^{8} - \frac{905323712011292172435}{31092325105312531811968} a^{7} + \frac{762927468938466919609}{31092325105312531811968} a^{5} + \frac{1}{16} a^{4} - \frac{3580186164547917129363}{31092325105312531811968} a^{3} + \frac{3732006509856850898447}{17767042917321446749696} a + \frac{15}{32}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{36}\times C_{36}$, which has order $944784$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4021635}{15941978148418} a^{17} - \frac{218702233}{291510457571072} a^{15} - \frac{10758456105}{2040573202997504} a^{13} - \frac{2816977778715}{2040573202997504} a^{11} + \frac{337048028075}{2040573202997504} a^{9} + \frac{536926311526755}{2040573202997504} a^{7} + \frac{4415201073441189}{2040573202997504} a^{5} + \frac{11804647568975655}{2040573202997504} a^{3} + \frac{998866294608735}{291510457571072} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252123542.90200993 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $D_9:C_3$ |
| Character table for $D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2700.1 x3, 6.0.21870000.2, 9.1.506440367892900000000.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |