Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 234 x^{14} - 462 x^{13} - 4710 x^{12} + 32004 x^{11} - 33261 x^{10} - 132499 x^{9} + 4397733 x^{8} - 16434924 x^{7} - 77689590 x^{6} + 289673118 x^{5} + 666797838 x^{4} - 1835112552 x^{3} - 3082794183 x^{2} + 4051301331 x + 6652087267 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-769445538694487691557611230000000000000000=-\,2^{16}\cdot 3^{33}\cdot 5^{16}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $212.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8}$, $\frac{1}{112} a^{12} - \frac{3}{56} a^{11} - \frac{3}{112} a^{10} - \frac{1}{8} a^{9} + \frac{3}{56} a^{8} - \frac{3}{56} a^{7} - \frac{1}{16} a^{6} + \frac{5}{56} a^{5} + \frac{3}{56} a^{4} + \frac{17}{56} a^{3} - \frac{5}{16} a^{2} + \frac{3}{8} a - \frac{1}{16}$, $\frac{1}{112} a^{13} + \frac{3}{112} a^{11} - \frac{1}{28} a^{10} + \frac{3}{56} a^{9} - \frac{3}{28} a^{8} - \frac{1}{112} a^{7} - \frac{1}{28} a^{6} - \frac{9}{56} a^{5} - \frac{1}{4} a^{4} + \frac{43}{112} a^{3} + \frac{1}{4} a^{2} + \frac{7}{16} a - \frac{1}{4}$, $\frac{1}{4256} a^{14} - \frac{1}{608} a^{13} + \frac{5}{2128} a^{12} + \frac{31}{4256} a^{11} - \frac{1}{4256} a^{10} - \frac{223}{2128} a^{9} + \frac{11}{224} a^{8} + \frac{339}{4256} a^{7} + \frac{115}{4256} a^{6} - \frac{61}{304} a^{5} - \frac{195}{4256} a^{4} + \frac{33}{608} a^{3} + \frac{123}{304} a^{2} + \frac{139}{608} a - \frac{263}{608}$, $\frac{1}{4256} a^{15} - \frac{1}{4256} a^{13} - \frac{13}{4256} a^{12} - \frac{25}{2128} a^{11} - \frac{263}{4256} a^{10} - \frac{25}{4256} a^{9} - \frac{201}{2128} a^{8} - \frac{29}{2128} a^{7} - \frac{467}{4256} a^{6} + \frac{515}{4256} a^{5} + \frac{155}{2128} a^{4} - \frac{1031}{4256} a^{3} + \frac{151}{608} a^{2} - \frac{3}{152} a - \frac{55}{608}$, $\frac{1}{2312567807848547616925134752} a^{16} - \frac{1}{289070975981068452115641844} a^{15} + \frac{259065109389230968083937}{2312567807848547616925134752} a^{14} - \frac{259065109389230968083917}{330366829692649659560733536} a^{13} - \frac{143912938427096238173325}{60857047574961779392766704} a^{12} + \frac{156196883423263048197103}{6406005007890713620291232} a^{11} + \frac{6631257876159457123397173}{136033400461679271583831456} a^{10} + \frac{16262384319734308069780897}{1156283903924273808462567376} a^{9} + \frac{4321737690476237842975914}{72267743995267113028910461} a^{8} - \frac{3175328874039559969152541}{136033400461679271583831456} a^{7} - \frac{18110331228208112579064033}{330366829692649659560733536} a^{6} - \frac{645834696892271721640831}{6683721988001582707876112} a^{5} + \frac{191477776563573810205496427}{2312567807848547616925134752} a^{4} + \frac{981725285043778585397690119}{2312567807848547616925134752} a^{3} - \frac{2374028813285532400484516}{10323963427895301861272923} a^{2} + \frac{83737037120726296861724863}{330366829692649659560733536} a + \frac{1035820310720966159615821}{9716671461548519398845104}$, $\frac{1}{60091179523202872437871876503570976} a^{17} + \frac{6496149}{30045589761601436218935938251785488} a^{16} - \frac{235288595724369331550412180581}{7511397440400359054733984562946372} a^{15} - \frac{3695583133476883311129131330601}{60091179523202872437871876503570976} a^{14} - \frac{3602113201970301243503971965647}{8584454217600410348267410929081568} a^{13} - \frac{1555168451008519166004884208441}{1581346829557970327312417802725552} a^{12} - \frac{2168295392353104985069255478804457}{60091179523202872437871876503570976} a^{11} + \frac{2718659469335162307394447040019557}{60091179523202872437871876503570976} a^{10} + \frac{18239483452071318397902519416607}{186040803477408273801460917967712} a^{9} + \frac{16894316858807353388891830445055}{8584454217600410348267410929081568} a^{8} + \frac{5734978901506459951571988440934115}{60091179523202872437871876503570976} a^{7} - \frac{2390005426619104126265598328941663}{60091179523202872437871876503570976} a^{6} + \frac{1103794645234922765938577855232901}{15022794880800718109467969125892744} a^{5} - \frac{1892975829043207925649472426218803}{8584454217600410348267410929081568} a^{4} - \frac{3510350230732745828834605885496335}{8584454217600410348267410929081568} a^{3} + \frac{663943652037265358799446059250675}{4292227108800205174133705464540784} a^{2} - \frac{1528896431471883002153099911274825}{4292227108800205174133705464540784} a - \frac{158197214314015476751810925973783}{504967895152965314603965348769504}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}$, which has order $19683$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{154400772656218350}{95030597200850615538642583} a^{17} - \frac{77200386328109175}{5590035129461800914037799} a^{16} + \frac{6164620139821628776}{95030597200850615538642583} a^{15} - \frac{19986519697105096320}{95030597200850615538642583} a^{14} + \frac{3313646250098481900}{5590035129461800914037799} a^{13} - \frac{7507808438395344820}{5001610378992137659928557} a^{12} - \frac{489752160090578544480}{95030597200850615538642583} a^{11} + \frac{3846117489114246887376}{95030597200850615538642583} a^{10} - \frac{5134696624760595803830}{95030597200850615538642583} a^{9} - \frac{7227430561518996965550}{95030597200850615538642583} a^{8} + \frac{658701928215376305820320}{95030597200850615538642583} a^{7} - \frac{2242872110419695756368960}{95030597200850615538642583} a^{6} - \frac{9827364358304186009946324}{95030597200850615538642583} a^{5} + \frac{4305436277746674026473680}{13575799600121516505520369} a^{4} + \frac{67419472709259606646678280}{95030597200850615538642583} a^{3} - \frac{18911096425357220027857200}{13575799600121516505520369} a^{2} - \frac{24711060151724786395588830}{13575799600121516505520369} a + \frac{1320373143636905576042675}{798576447065971559148257} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30369487687.174183 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $D_9:C_3$ |
| Character table for $D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2700.1 x3, 6.0.21870000.2, 9.1.506440367892900000000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |