Normalized defining polynomial
\( x^{18} - 4 x^{17} - 161 x^{16} + 122 x^{15} + 12163 x^{14} + 26048 x^{13} - 396092 x^{12} - 1847422 x^{11} + 4445026 x^{10} + 49750964 x^{9} + 101924407 x^{8} - 223146292 x^{7} - 1210841585 x^{6} + 1527209132 x^{5} + 28187586667 x^{4} + 108856477778 x^{3} + 256578470140 x^{2} + 342514005968 x + 299674652229 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-76610513899544453304430517636008399400337408000000000=-\,2^{30}\cdot 3^{6}\cdot 5^{9}\cdot 7^{14}\cdot 43^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $866.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{5}{18} a$, $\frac{1}{18} a^{8} - \frac{1}{2} a^{4} - \frac{1}{18} a^{2} - \frac{1}{2}$, $\frac{1}{54} a^{9} - \frac{1}{54} a^{7} - \frac{1}{3} a^{4} - \frac{19}{54} a^{3} - \frac{1}{3} a^{2} - \frac{4}{27} a - \frac{1}{3}$, $\frac{1}{54} a^{10} - \frac{1}{54} a^{8} - \frac{19}{54} a^{4} - \frac{4}{27} a^{2}$, $\frac{1}{162} a^{11} + \frac{1}{162} a^{9} - \frac{1}{81} a^{7} + \frac{1}{18} a^{6} - \frac{19}{162} a^{5} - \frac{1}{6} a^{4} - \frac{23}{81} a^{3} + \frac{1}{3} a^{2} - \frac{8}{81} a + \frac{5}{18}$, $\frac{1}{324} a^{12} - \frac{1}{162} a^{10} + \frac{1}{324} a^{8} + \frac{2}{81} a^{6} - \frac{31}{81} a^{4} + \frac{29}{81} a^{2} - \frac{1}{4}$, $\frac{1}{2916} a^{13} + \frac{1}{972} a^{12} - \frac{2}{243} a^{10} - \frac{7}{972} a^{9} - \frac{17}{972} a^{8} - \frac{13}{1458} a^{7} - \frac{1}{243} a^{6} + \frac{2}{27} a^{5} - \frac{5}{486} a^{4} - \frac{104}{243} a^{3} + \frac{74}{243} a^{2} - \frac{623}{2916} a + \frac{49}{324}$, $\frac{1}{2916} a^{14} - \frac{1}{486} a^{11} - \frac{7}{972} a^{10} - \frac{2}{243} a^{9} + \frac{7}{729} a^{8} - \frac{13}{486} a^{7} + \frac{73}{486} a^{5} + \frac{35}{486} a^{4} - \frac{167}{486} a^{3} + \frac{1267}{2916} a^{2} - \frac{25}{243} a - \frac{5}{54}$, $\frac{1}{122472} a^{15} + \frac{1}{13608} a^{14} + \frac{1}{8748} a^{13} + \frac{11}{13608} a^{12} - \frac{73}{40824} a^{11} + \frac{23}{4536} a^{10} - \frac{475}{61236} a^{9} + \frac{19}{13608} a^{8} + \frac{4}{15309} a^{7} + \frac{67}{1701} a^{6} - \frac{169}{2916} a^{5} - \frac{907}{2268} a^{4} - \frac{48407}{122472} a^{3} + \frac{5515}{13608} a^{2} + \frac{1705}{61236} a - \frac{1033}{13608}$, $\frac{1}{122472} a^{16} + \frac{17}{122472} a^{14} + \frac{5}{40824} a^{13} + \frac{25}{20412} a^{12} - \frac{5}{3402} a^{11} - \frac{239}{122472} a^{10} - \frac{109}{13608} a^{9} + \frac{2105}{122472} a^{8} - \frac{5}{729} a^{7} - \frac{187}{20412} a^{6} + \frac{25}{1701} a^{5} + \frac{11875}{122472} a^{4} + \frac{473}{6804} a^{3} + \frac{54227}{122472} a^{2} - \frac{17599}{40824} a + \frac{1055}{4536}$, $\frac{1}{9306416510904507861103639636627356873969563792831103027768} a^{17} - \frac{1685362338816774864645421453875294928341124101848305}{1034046278989389762344848848514150763774395976981233669752} a^{16} - \frac{11790542554059088101124863859812786279437869713744737}{9306416510904507861103639636627356873969563792831103027768} a^{15} + \frac{18844880957802319128162832482155636628440494502412055}{172341046498231627057474808085691793962399329496872278292} a^{14} + \frac{377896839789940118831047359445624696273603490362909963}{9306416510904507861103639636627356873969563792831103027768} a^{13} + \frac{619382404245668080454892745628420492261218392037129793}{517023139494694881172424424257075381887197988490616834876} a^{12} + \frac{8971775831363275334959927687260056517586225196092734283}{9306416510904507861103639636627356873969563792831103027768} a^{11} + \frac{1208921518582346712156475087450998845394986071896234697}{517023139494694881172424424257075381887197988490616834876} a^{10} - \frac{34068752793694288581408491506196033565844624492475610583}{4653208255452253930551819818313678436984781896415551513884} a^{9} - \frac{880753984145206975051613062726082071223177994425431205}{114894030998821084704983205390461195974932886331248185528} a^{8} + \frac{70017830860559625687171935266884329647713038682710891315}{4653208255452253930551819818313678436984781896415551513884} a^{7} + \frac{35077671795749977892326190620168635425682798827879612705}{517023139494694881172424424257075381887197988490616834876} a^{6} + \frac{1297571197018537784495298758682946333669619950055226722959}{9306416510904507861103639636627356873969563792831103027768} a^{5} - \frac{240380814735485503148499061005218084858425242866105438497}{1034046278989389762344848848514150763774395976981233669752} a^{4} - \frac{288358885405639743156954566946808426239141880611229216271}{1329488072986358265871948519518193839138509113261586146824} a^{3} + \frac{5210058886660212356764511990354820030897273849592513280}{43085261624557906764368702021422948490599832374218069573} a^{2} - \frac{1756095845582540587683897870015873709074026281606567335133}{4653208255452253930551819818313678436984781896415551513884} a + \frac{4830520570244258511182269804110612868523547201235015093}{10039284262032910314027658723438356929848504630885763784}$
Class group and class number
$C_{3}\times C_{3}\times C_{6}\times C_{12}\times C_{252}\times C_{212688}$, which has order $34731099648$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58418500973.81414 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.90601.1, 3.3.7224.1, 6.0.104372352000.1, 6.0.65668329608000.1, 9.9.3094562042913836404224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.6.5.5 | $x^{6} + 31347$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 43.6.5.5 | $x^{6} + 31347$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |