Normalized defining polynomial
\( x^{18} - 7 x^{17} + 76 x^{16} - 378 x^{15} + 2531 x^{14} - 9987 x^{13} + 50888 x^{12} - 164417 x^{11} + 687416 x^{10} - 1828199 x^{9} + 6495797 x^{8} - 13992021 x^{7} + 43041793 x^{6} - 71859458 x^{5} + 193370792 x^{4} - 226538639 x^{3} + 536835424 x^{2} - 336518414 x + 707215681 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7626281990217745472007517214473951=-\,19^{16}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(589=19\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{589}(1,·)$, $\chi_{589}(404,·)$, $\chi_{589}(216,·)$, $\chi_{589}(218,·)$, $\chi_{589}(92,·)$, $\chi_{589}(30,·)$, $\chi_{589}(187,·)$, $\chi_{589}(156,·)$, $\chi_{589}(125,·)$, $\chi_{589}(557,·)$, $\chi_{589}(495,·)$, $\chi_{589}(435,·)$, $\chi_{589}(309,·)$, $\chi_{589}(311,·)$, $\chi_{589}(340,·)$, $\chi_{589}(123,·)$, $\chi_{589}(61,·)$, $\chi_{589}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{37896151960943957609517688354002402475508815817956989731} a^{17} - \frac{16950195831095394527785182054256552404210953786346811464}{37896151960943957609517688354002402475508815817956989731} a^{16} + \frac{1606853799992990700271749592169222729257357704766981010}{37896151960943957609517688354002402475508815817956989731} a^{15} + \frac{13522905065716371029346844868808526966418586321481587903}{37896151960943957609517688354002402475508815817956989731} a^{14} - \frac{3398272787256622148288304875367371278252342046470121176}{37896151960943957609517688354002402475508815817956989731} a^{13} - \frac{7538851579146552991354046413364563477522882415833605222}{37896151960943957609517688354002402475508815817956989731} a^{12} + \frac{3350104237845733545834734091059734300871264148218693821}{37896151960943957609517688354002402475508815817956989731} a^{11} + \frac{8497577205132048082371106310640967248706530262282771674}{37896151960943957609517688354002402475508815817956989731} a^{10} + \frac{479273506119386798298836891627748385932785078628256944}{37896151960943957609517688354002402475508815817956989731} a^{9} - \frac{16066328916385969562956883271973607476811244709161411258}{37896151960943957609517688354002402475508815817956989731} a^{8} + \frac{5578232371249711499257806622827799168838028815677721714}{37896151960943957609517688354002402475508815817956989731} a^{7} - \frac{4854525947317002678487272620848750430365033581981235501}{37896151960943957609517688354002402475508815817956989731} a^{6} + \frac{13678125512323727928611180431339731383653456675049412822}{37896151960943957609517688354002402475508815817956989731} a^{5} + \frac{736710081092717032986651639705951738007742760909216687}{37896151960943957609517688354002402475508815817956989731} a^{4} + \frac{12035450576834859142387418653341366818334247367257129327}{37896151960943957609517688354002402475508815817956989731} a^{3} + \frac{819281503036621177336861157670294672068982619002708622}{37896151960943957609517688354002402475508815817956989731} a^{2} + \frac{16873132348516773336821200784216668431899109694447810712}{37896151960943957609517688354002402475508815817956989731} a + \frac{18189290285388980462843837967896739722632126449802372131}{37896151960943957609517688354002402475508815817956989731}$
Class group and class number
$C_{2}\times C_{39906}$, which has order $79812$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.361.1, 6.0.3882392911.2, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | $18$ | R | $18$ | $18$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |