Normalized defining polynomial
\( x^{18} - 2 x^{17} + 39 x^{16} - 66 x^{15} + 860 x^{14} - 1276 x^{13} + 12807 x^{12} - 16470 x^{11} + 138889 x^{10} - 152462 x^{9} + 1120553 x^{8} - 1017454 x^{7} + 6677144 x^{6} - 4749676 x^{5} + 28239050 x^{4} - 14144668 x^{3} + 76910381 x^{2} - 20623090 x + 103115431 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-762006701275810777282417256300544=-\,2^{27}\cdot 3^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(456=2^{3}\cdot 3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{456}(1,·)$, $\chi_{456}(197,·)$, $\chi_{456}(385,·)$, $\chi_{456}(73,·)$, $\chi_{456}(77,·)$, $\chi_{456}(149,·)$, $\chi_{456}(121,·)$, $\chi_{456}(25,·)$, $\chi_{456}(5,·)$, $\chi_{456}(289,·)$, $\chi_{456}(101,·)$, $\chi_{456}(389,·)$, $\chi_{456}(169,·)$, $\chi_{456}(365,·)$, $\chi_{456}(49,·)$, $\chi_{456}(245,·)$, $\chi_{456}(313,·)$, $\chi_{456}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11397902101497910952248547269128046773158497715010193} a^{17} - \frac{4453014023645486683893960454492367546132742519418952}{11397902101497910952248547269128046773158497715010193} a^{16} - \frac{1364864153031884256603374070839441273498594439377407}{11397902101497910952248547269128046773158497715010193} a^{15} + \frac{1423741677668014749449734359490430577209164081256556}{11397902101497910952248547269128046773158497715010193} a^{14} + \frac{2811571502576202302610390689504648591584198929036197}{11397902101497910952248547269128046773158497715010193} a^{13} + \frac{1697865407113942381635786223243801959677909063788097}{11397902101497910952248547269128046773158497715010193} a^{12} - \frac{4622783572484723910880868933931592866917151576117116}{11397902101497910952248547269128046773158497715010193} a^{11} - \frac{3137646039042559954547230071650667206662845897507002}{11397902101497910952248547269128046773158497715010193} a^{10} - \frac{1844291215837052166007847369410402668384508412109208}{11397902101497910952248547269128046773158497715010193} a^{9} - \frac{4730804161440837544624356305116491681732703004018741}{11397902101497910952248547269128046773158497715010193} a^{8} - \frac{2968135861399743970995642578558019009398780690339820}{11397902101497910952248547269128046773158497715010193} a^{7} + \frac{3400047423942085109297283754105781086255392104535727}{11397902101497910952248547269128046773158497715010193} a^{6} - \frac{3874642653144424197269676616835443312537000288079231}{11397902101497910952248547269128046773158497715010193} a^{5} + \frac{233874806041657713396886064385678197825444517074866}{11397902101497910952248547269128046773158497715010193} a^{4} - \frac{4279319990509687307061911220376595738353969784916641}{11397902101497910952248547269128046773158497715010193} a^{3} - \frac{5680718670543692451533133227995455275519951353695096}{11397902101497910952248547269128046773158497715010193} a^{2} + \frac{3581290796299036060785301439357412050483857431130504}{11397902101497910952248547269128046773158497715010193} a - \frac{561212618259320843158764617057537221276102245026838}{11397902101497910952248547269128046773158497715010193}$
Class group and class number
$C_{18506}$, which has order $18506$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.3.361.1, 6.0.1801557504.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||