Normalized defining polynomial
\( x^{18} - 6 x^{16} - 12 x^{15} - 45 x^{14} - 48 x^{13} + 660 x^{12} + 6267 x^{10} - 1024 x^{9} + 19710 x^{8} - 9060 x^{7} + 11553 x^{6} - 13680 x^{5} - 65244 x^{4} + 29136 x^{3} - 73008 x^{2} + 32448 x + 140608 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-76198610101243824678371328000000=-\,2^{26}\cdot 3^{31}\cdot 5^{6}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{2} + \frac{1}{3} a$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{10} + \frac{1}{36} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{7}{18} a^{2} + \frac{7}{18} a + \frac{1}{9}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{11} - \frac{1}{36} a^{10} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{5}{24} a^{4} + \frac{31}{72} a^{3} - \frac{11}{36} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{11} + \frac{1}{36} a^{10} + \frac{1}{36} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{24} a^{5} + \frac{5}{36} a^{4} + \frac{5}{24} a^{3} + \frac{4}{9} a^{2} + \frac{5}{18} a + \frac{1}{9}$, $\frac{1}{72} a^{14} - \frac{1}{72} a^{11} + \frac{1}{36} a^{10} - \frac{1}{36} a^{9} + \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{5}{24} a^{6} + \frac{5}{36} a^{5} + \frac{1}{12} a^{4} - \frac{5}{24} a^{3} + \frac{13}{36} a^{2} - \frac{7}{18} a - \frac{1}{9}$, $\frac{1}{144} a^{15} - \frac{1}{144} a^{11} - \frac{1}{72} a^{10} + \frac{1}{36} a^{9} + \frac{1}{12} a^{8} + \frac{5}{48} a^{7} - \frac{1}{18} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} + \frac{11}{48} a^{3} - \frac{11}{72} a^{2} - \frac{11}{36} a + \frac{5}{18}$, $\frac{1}{18720} a^{16} - \frac{1}{360} a^{15} - \frac{1}{3120} a^{14} - \frac{1}{1560} a^{13} - \frac{97}{18720} a^{12} + \frac{1}{4680} a^{11} + \frac{5}{234} a^{10} - \frac{1}{45} a^{9} + \frac{113}{6240} a^{8} - \frac{1127}{4680} a^{7} + \frac{47}{1872} a^{6} - \frac{79}{1560} a^{5} - \frac{257}{6240} a^{4} + \frac{1091}{4680} a^{3} - \frac{233}{1170} a^{2} + \frac{98}{585} a + \frac{19}{90}$, $\frac{1}{4077167808182259957341760} a^{17} - \frac{481237670782239769}{52271382156182819965920} a^{16} + \frac{340095767891995771237}{2038583904091129978670880} a^{15} + \frac{2323926016532057211721}{509645976022782494667720} a^{14} - \frac{778655358794172504533}{453018645353584439704640} a^{13} - \frac{501401170014410254051}{679527968030376659556960} a^{12} + \frac{688769053310048046139}{67952796803037665955696} a^{11} - \frac{872929763867214595069}{39203536617137114974440} a^{10} - \frac{21268850424222214801927}{1359055936060753319113920} a^{9} - \frac{218995820627362733239069}{2038583904091129978670880} a^{8} + \frac{7897538309618655714651}{45301864535358443970464} a^{7} - \frac{87530111289773373535361}{509645976022782494667720} a^{6} - \frac{408770292211317249417871}{4077167808182259957341760} a^{5} + \frac{123268948631792116758119}{679527968030376659556960} a^{4} + \frac{19389887201345494454997}{113254661338396109926160} a^{3} - \frac{7658090954333167537547}{56627330669198054963080} a^{2} - \frac{84483202416401906909}{4900442077142139371805} a - \frac{40264775575235622}{8376824063490836533}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{40386895}{4589362651968} a^{17} - \frac{198356707}{3824468876640} a^{16} + \frac{2137782197}{11473406629920} a^{15} + \frac{695951327}{1434175828740} a^{14} - \frac{68724049}{2549645917760} a^{13} + \frac{4510483597}{11473406629920} a^{12} - \frac{45957683597}{5736703314960} a^{11} - \frac{7352550139}{191223443832} a^{10} + \frac{900378063367}{22946813259840} a^{9} - \frac{2867539440619}{11473406629920} a^{8} + \frac{2119341620861}{3824468876640} a^{7} - \frac{135892911209}{143417582874} a^{6} + \frac{41630621281181}{22946813259840} a^{5} - \frac{2507870491521}{1274822958880} a^{4} + \frac{6025610017043}{5736703314960} a^{3} - \frac{188656004173}{2868351657480} a^{2} - \frac{462769617271}{119514652395} a + \frac{1674697350514}{358543957185} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 292071104.75417435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1080.1, 6.0.15431472.1, 6.0.3499200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.22.27 | $x^{12} + 2 x^{6} + 4$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[3]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |